The contribution of radiotherapy, , to late cardiotoxicity remains controversial. To clarify its impact on the development of early cardiac dysfunction, we developed an experimental model in which the hearts of rats were exposed, in a fractionated plan, to clinically relevant doses of ionizing radiation for oncological patients that undergo thoracic radiotherapy. Rat hearts were exposed to daily doses of 0.04, 0.3, and 1.2 Gy for 23 days, achieving cumulative doses of 0.92, 6.9, and 27.6 Gy, respectively. We demonstrate that myocardial deformation, assessed by global longitudinal strain, was impaired (a relative percentage reduction of >15% from baseline) in a dose-dependent manner at 18 months. Moreover, by scanning electron microscopy, the microvascular density in the cardiac apex was significantly decreased exclusively at 27.6 Gy dosage. Before GLS impairment detection, several tools (qRT-PCR, mass spectrometry, and western blot) were used to assess molecular changes in the cardiac tissue. The number/expression of several genes, proteins, and KEGG pathways, related to inflammation, fibrosis, and cardiac muscle contraction, were differently expressed in the cardiac tissue according to the cumulative dose. Subclinical cardiac dysfunction occurs in a dose-dependent manner as detected by molecular changes in cardiac tissue, a predictor of the severity of global longitudinal strain impairment. Moreover, there was no dose threshold below which no myocardial deformation impairment was detected. Our findings i) contribute to developing new markers and exploring non-invasive magnetic resonance imaging to assess cardiac tissue changes as an early predictor of cardiac dysfunction; ii) should raise red flags, since there is no dose threshold below which no myocardial deformation impairment was detected and should be considered in radiation-based imaging and -guided therapeutic cardiac procedures; and iii) highlights the need for personalized clinical approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360508PMC
http://dx.doi.org/10.3389/fonc.2022.945521DOI Listing

Publication Analysis

Top Keywords

cardiac tissue
20
cardiac dysfunction
16
molecular changes
12
cardiac
12
changes cardiac
12
myocardial deformation
12
global longitudinal
8
longitudinal strain
8
dose-dependent manner
8
dose threshold
8

Similar Publications

The implication of pericardial effusion in the third trimester for preeclampsia and heart failure in high-risk pregnant women.

J Echocardiogr

January 2025

Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, 1035 Dalgubeol-Daero, Dalseo-Gu, Daegu, 42601, Republic of Korea.

Background: With the growing number of high-risk pregnant women, echocardiography frequently reveals pericardial effusion (PE). However, the clinical implications of PE are unknown.

Method: We analyzed a cohort of 406 high-risk pregnant women who underwent echocardiography in the third trimester between November 2019 and December 2022.

View Article and Find Full Text PDF

Risk analysis of cardiovascular toxicity in patients with lymphoma treated with CD19 CAR T cells.

J Transl Med

January 2025

Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.

Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!