Salt marshes can build in elevation with sea-level rise through accumulation of inorganic sediment and organic matter, but marshes worldwide are under threat of drowning due to rapid rates of sea-level rise that outpace natural marsh building rates. The application of a thin layer of sediment to the marsh surface (thin-layer placement [TLP]) is a tool to build elevation and decrease flooding stress, but its effects on marsh plants are understudied, especially in New England. In a novel application of a marsh organ experiment (i.e. rows of pots at different elevations), the addition of 10 cm of sand to pots planted with Spartina alterniflora and Spartina patens resulted in fewer stems than controls for S. patens but not S. alterniflora after 2 months. However, total biomass and root mass were not significantly impacted for either species, suggesting plants will fully recover from TLP over longer timescales. Effects of TLP on biomass and stem density did not vary significantly by elevation. Although long-term research is still needed, short-term equivalency in biomass between TLP treatments and controls suggests TLP of 10 cm is a promising strategy to enhance the ability of marshes to build vertically as sea level rises in New England.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364950PMC
http://dx.doi.org/10.2112/jcoastres-d-20-00072.1DOI Listing

Publication Analysis

Top Keywords

marsh organ
8
marshes build
8
build elevation
8
sea-level rise
8
marsh
6
short-term effects
4
effects thin-layer
4
thin-layer sand
4
sand placement
4
placement salt
4

Similar Publications

While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.

View Article and Find Full Text PDF

Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China.

Sci Total Environ

January 2025

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:

Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.

View Article and Find Full Text PDF

Bio-concentration of hazardous metals in migrant shorebirds in a key conservation reserve and adjoining areas on the west coast of India.

Ecotoxicol Environ Saf

January 2025

Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:

Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.

View Article and Find Full Text PDF

Increasing the use of microphysiological systems (MPS) in Three Rs and regulatory applications is a nuanced but important goal, which would also help increase their scientific impact. There are three distinct and important stakeholder groups that each play a unique role in expediting the use of MPS for regulatory purpose - namely, commercial MPS developers, end-users and regulators. Additionally, non-profit organisations, such as the 3Rs Collaborative (3RsC), can help coordinate these efforts.

View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi as a Salt Bioaccumulation Mechanism for the Establishment of a Neotropical Halophytic Fern in Saline Soils.

Microorganisms

December 2024

Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.

is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!