In this paper, machine learning models for an effective estimation of soil moisture content using a microwave short-range and wideband radar sensor are proposed. The soil moisture is measured as the volumetric water content using a short-range off-the-shelf radar sensor operating at 3-10 GHz. The radar captures the reflected signals that are post processed to determine the soil moisture which is mapped to the input features extracted from the reflected signals for the training of the machine learning models. In addition, the results are compared and analyzed with a contact-based Vernier soil sensor. Different machine learning models trained using neural network, support vector machine, linear regression and k-nearest neighbor are evaluated and presented in this work. The efficiency of the model is computed using root mean square error, co-efficient of determination and mean absolute error. The RMSE and MAE values of KNN, SVM and Linear Regression are 11.51 and 9.27, 15.20 and 12.74, 3.94 and 3.54, respectively. It is observed that the neural network gives the best results with an R2 value of 0.9894. This research work has been carried out with an intention to develop cost-effective solutions for common users such as agriculturists to monitor the soil moisture conditions with improved accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370892 | PMC |
http://dx.doi.org/10.3390/s22155810 | DOI Listing |
Sensors (Basel)
December 2024
Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFPlants (Basel)
January 2025
AirTech UAV Solutions Inc., Inverary, ON K0H 1X0, Canada.
Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Biophysics, National Research Lobachevsky, State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia.
Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Silviculture, Poznań University of Life Sciences, ul. Wojska Polskiego 71A, Poznań, 60-625, Poland.
The study assessed the sensitivity of 20 provenances of European larch (Larix decidua Mill.) growing at provenance experimental trials located in lowland (Siemianice) and upland (Bliżyn) climate in Central Poland to air temperature and precipitation, including drought. The measure of the tree' sensitivity was their radial growth reactions, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!