The combination of flexible-printed substrates and conventional electronics leads to flexible hybrid electronics. When fabrics are used as flexible substrates, two kinds of problems arise. The first type is related to the printing of the tracks of the corresponding circuit. The second one concerns the incorporation of conventional electronic devices, such as integrated circuits, on the textile substrate. Regarding the printing of tracks, this work studies the optimal design parameters of screen-printed silver tracks on textiles focused on printing an electronic circuit on a textile substrate. Several patterns of different widths and gaps between tracks were tested in order to find the best design parameters for some footprint configurations. With respect to the incorporation of devices on textile substrates, the paper analyzes the soldering of surface mount devices on fabric substrates. Due to the substrate's nature, low soldering temperatures must be used to avoid deformations or damage to the substrate caused by the higher temperatures used in conventional soldering. Several solder pastes used for low-temperature soldering are analyzed in terms of joint resistance and shear force application. The results obtained are satisfactory, demonstrating the viability of using flexible hybrid electronics with fabrics. As a practical result, a simple single-layer circuit was implemented to check the results of the research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370845 | PMC |
http://dx.doi.org/10.3390/s22155766 | DOI Listing |
Free Radic Biol Med
January 2025
Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:
Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye. Electronic address:
Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:
Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India. Electronic address:
The objective of this work was to explore the Teriflunomide (TFM) -loaded chondroitin sulfate hybridized zein nanoparticles (TZCNPs) for the treatment of triple-negative breast cancer (TNBC). The particle size, PDI and %EE of optimized TZCNPs was found 208.7 ± 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!