A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smart Active Vibration Control System of a Rotary Structure Using Piezoelectric Materials. | LitMetric

A smart active vibration control (AVC) system containing piezoelectric (PZT) actuators, jointly with a linear quadratic regulator (LQR) controller, is proposed in this article to control transverse deflections of a wind turbine (WT) blade. In order to apply controlling rules to the WT blade, a state-of-the-art semi-analytical solution is developed to obtain WT blade lateral displacement under external loadings. The proposed method maps the WT blade to a Euler-Bernoulli beam under the same conditions to find the blade's vibration and dynamic responses by solving analytical vibration solutions of the Euler-Bernoulli beam. The governing equations of the beam with PZT patches are derived by integrating the PZT transducer vibration equations into the vibration equations of the Euler-Bernoulli beam structure. A finite element model of the WT blade with PZT patches is developed. Next, a unique transfer function matrix is derived by exciting the structures and achieving responses. The beam structure is projected to the blade using the transfer function matrix. The results obtained from the mapping method are compared with the counter of the blade's finite element model. A satisfying agreement is observed between the results. The results showed that the method's accuracy decreased as the sensors' distance from the base of the wind turbine increased. In the designing process of the LQR controller, various weighting factors are used to tune control actions of the AVC system. LQR optimal control gain is obtained by using the state-feedback control law. The PZT actuators are located at the same distance from each other an this effort to prevent neutralizing their actuating effects. The LQR shows significant performance by diminishing the weights on the control input in the cost function. The obtained results indicate that the proposed smart control system efficiently suppresses the vibration peaks along the WT blade and the maximum flap-wise displacement belonging to the tip of the structure is successfully controlled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371093PMC
http://dx.doi.org/10.3390/s22155691DOI Listing

Publication Analysis

Top Keywords

euler-bernoulli beam
12
smart active
8
active vibration
8
control
8
vibration control
8
control system
8
avc system
8
pzt actuators
8
lqr controller
8
wind turbine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!