In this work, Ag-doped ZnO nanoparticles are obtained via pulsed laser ablation of the Ag-coated ZnO target in water. The ratio of Ag dopant in ZnO nanoparticles strongly depends on the thickness of the Ag layer at the ZnO target. Synthesized nanoparticles were characterized by XRD, XPS, SEM, EDS, ICP-OES, and UV-VIS spectrophotometry to obtain their crystal structure, elemental composition, morphology and size distribution, mass concentration, and optical properties, respectively. The photocatalytic studies showed photodegradation of methylene blue (MB) under UV irradiation. Different ratios of Ag dopant in ZnO nanoparticles influence the photodegradation rate. The ZnO nanoparticles doped with 0.32% silver show the most efficient photodegradation rate, with the chemical reaction constant of 0.0233 min. It exhibits an almost twice as large photodegradation rate compared to pure ZnO nanoparticles, showing the doping effect on the photocatalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370537PMC
http://dx.doi.org/10.3390/nano12152677DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
24
photodegradation rate
16
methylene blue
8
zno
8
ag-doped zno
8
zno target
8
dopant zno
8
nanoparticles
7
photodegradation
5
enhancement methylene
4

Similar Publications

As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8 T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!