Cannabis ( L.) is a dioecious plant that produces both male and female inflorescences. In nature, male and female plants can be found with nearly equal frequency, which determines species out-crossing. In cannabis farming, only female plants are preferred due to their high yield of cannabinoids. In addition to unfavorable male plants, commercial production of cannabis faces the appearance of hermaphroditic inflorescences, species displaying both pistillate flowers and anthers. Such plants can out-cross female plants, simultaneously producing undesired seeds. The problem of hermaphroditic cannabis triggered a search for analytical tools that can be used for their rapid detection and identification. In this study, we investigate the potential of Raman spectroscopy (RS), an emerging sensing technique that can be used to probe plant biochemistry. Our results show that the biochemistry of male, female and hermaphroditic cannabis plants is drastically different which allows for their confirmatory identification using a hand-held Raman spectrometer. Furthermore, the coupling of machine learning approaches enables the identification of hermaphrodites with 98.7% accuracy, whereas both male and female plants can be identified with 100% accuracy. Considering the label-free, non-invasive and non-destructive nature of RS, the developed optical sensing approach can transform cannabis farming in the U.S. and overseas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370318 | PMC |
http://dx.doi.org/10.3390/molecules27154978 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!