ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370430PMC
http://dx.doi.org/10.3390/molecules27154951DOI Listing

Publication Analysis

Top Keywords

alk tyrosine
12
tyrosine kinase
12
molecular docking
8
docking simulation
8
simulation mmgbsa
8
anticancer activity
8
validation parameters
8
qsar
5
alk
5
qsar molecular
4

Similar Publications

Background: Lung cancer continues to be the primary cause of cancer-related deaths globally, with the majority of cases identified at advanced stages. Genetic alterations, including mutations and gene fusions, are central to its molecular pathogenesis. The discovery of therapeutically targetable gene fusions, such as ALK, RET, ROS1, and NTRK1, has significantly advanced lung cancer management.

View Article and Find Full Text PDF

EGFR and ALK are key driver mutations in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors are recommended as the first-line treatment for advanced NSCLC with driving oncogenes because they have fewer side effects and provide better disease control than chemotherapy. The present retrospective analysis aimed to investigate how altered driver genes impact cancer outcomes and clinical presentation.

View Article and Find Full Text PDF

[Savolitinib Induced Pathological Complete Response in Non-small Cell Lung Cancer with MET Amplification: A Case Report].

Zhongguo Fei Ai Za Zhi

November 2024

Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300000, China.

Mesenchymal-epithelial transition factor (MET) gene mutation is a large class of mutations commonly seen in non-small cell lung cancer (NSCLC). MET mutation includes subtypes such as MET exon 14 skipping mutation (METex14m) and MET amplification (METamp). For advanced NSCLC with METex14m, Savolitinib has a high sensitivity as a member of tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

EML4-ALK: Update on ALK Inhibitors.

Int J Mol Sci

January 2025

Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy.

Since the discovery of the first-generation ALK inhibitor, many other tyrosine kinase inhibitors have been demonstrated to be effective in the first line or further lines of treatment in patients with advanced non-small cell lung cancer with EMLA4-ALK translocation. This review traces the main milestones in the treatment of ALK-positive metastatic patients and the survival outcomes in the first-line and second-line settings with different ALK inhibitors. It presents the two options available for first-line treatment at the present time: sequencing different ALK inhibitors versus using the most potent inhibitor in front-line treatment.

View Article and Find Full Text PDF

Consolidation ALK Tyrosine Kinase Inhibitor in Definitively Treated Unresectable Stage III ALK+ NSCLC: Can Real-World Data Inform Clinical Decision in the Absence of a LAURA-Type Designed Trial?

J Thorac Oncol

January 2025

Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange/Irvine, California; Chao Family Comprehensive Cancer Center, Orange/Irvine, California; St. Marianna University School of Medicine, Kawasaki, Japan. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!