The increasing incidence of cardiovascular diseases has created an urgent need for safe and effective antithrombotic agents. In this study, we aimed to elucidate the structural characteristics and antithrombotic activity of a novel polysaccharide isolated from fruiting bodies. The purified polysaccharide AAP-b2 (12.02 kDa) was composed of mannose, glucuronic acid, glucose and xylose, with a molar ratio of 89.25:30.50:4.25:1.00. Methylation and NMR analyses showed that AAP-b2 primarily consisted of →2,3)-Manp-(1→, →3)-Manp-(1→, →4)-GlcAp-(1→ and Manp-(1→. A thrombus mouse model induced by carrageenan was used in this research to evaluate its antithrombotic effect. AAP-b2 significantly inhibited platelet aggregation, reduced the black tail length and prolonged the coagulation time, including activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT), exerting a good inhibitory effect on thrombosis in mice. The antithrombotic activity of AAP-b2 was found to be related to the inhibition of platelet activation by regulation of endothelial nitric oxide synthases (eNOs), endothelin-1 (ET-1), prostacyclin (PGI2) and thromboxane B2 (TXB2), along with the enhancement of anticoagulant activity by affecting antithrombin III (AT-III) and protein C (PC) pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369961 | PMC |
http://dx.doi.org/10.3390/molecules27154831 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.
Adenosine A receptor (AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an AR selective antagonist compound 38 with an IC value of 29.0 nM.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:
Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China. Electronic address:
Many consumers are adopting low-sugar and low-fat beverages to avoid excessive calories and the negative impact of high trans- and/or saturated fat on health and wellbeing. This article reviews strategies to reduce sugar, fat, and high trans- and/or saturated fat content in beverages while maintaining their desirable physicochemical and sensory attributes. It assesses the impact of various sugar and fat replacers on the aroma, taste, texture, appearance, and nutritional profile of beverages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!