Herein, we propose two chalcone molecules, (E)-1-(4-methoxyphenyl)-3-(p-tolyl) prop-2-en-1-one and (E)-3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl) prop-2-en-1-one, based on the anticancer bioactive molecule Xanthohumol, which are suitable for further in vitro and in vivo studies. Their ability to create stable complexes with the antiapoptotic X-linked IAP (XIAP) protein makes them promising anticancer agents. The calculations were based on ligand-based and structure-based virtual screening combined with the pharmacophore build. Additionally, the structures passed Lipinski's rule for drug use, and their reactivity was confirmed using density functional theory studies. ADMET studies were also performed to reveal the pharmacokinetic potential of the compounds. The candidates were chosen from 10,639,400 compounds, and the docking protocols were evaluated using molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369490 | PMC |
http://dx.doi.org/10.3390/molecules27154825 | DOI Listing |
Front Pharmacol
January 2025
Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, United States.
Introduction: Recent advances in 3D structure-based deep learning approaches demonstrate improved accuracy in predicting protein-ligand binding affinity in drug discovery. These methods complement physics-based computational modeling such as molecular docking for virtual high-throughput screening. Despite recent advances and improved predictive performance, most methods in this category primarily rely on utilizing co-crystal complex structures and experimentally measured binding affinities as both input and output data for model training.
View Article and Find Full Text PDFACS Omega
January 2025
Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research (ICEIR-4), Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India.
Despite recent breakthroughs in diagnosis and treatment, cancer remains a worldwide health challenge with high mortality. Autophagy plays a major role in the progression and development. Starving cancer cells obtain nutrients through the upregulation of autophagy.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, New York University, New York, New York 10003, United States.
Molecular Docking is a critical task in structure-based virtual screening. Recent advancements have showcased the efficacy of diffusion-based generative models for blind docking tasks. However, these models do not inherently estimate protein-ligand binding strength thus cannot be directly applied to virtual screening tasks.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Chemistry, Integral University, Lucknow, India.
Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!