Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this review, we have summarized the main advantages of the method of spectroelectrochemistry as applied to recent studies on electrosynthesis and redox processes of electroactive polymer composite materials, which have found wide application in designing organic optoelectronic devices, batteries and sensors. These polymer composites include electroactive polymer complexes with large unmovable dopant anions such as polymer electrolytes, organic dyes, cyclodextrins, poly(β-hydroxyethers), as well as polymer-inorganic nanocomposites. The spectroelectrochemical methods reviewed include in situ electron absorption, Raman, infrared and electron spin resonance spectroscopies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370871 | PMC |
http://dx.doi.org/10.3390/polym14153201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!