The greenhouse emissions are biggest challenge of the present era. The renewable power sources are required to have characteristics of good charge capacity, energy density with proven charging discharging cycles for energy storage and applications. Mg-air batteries (MABs) are an alternative renewable power source due to their inexpensive cost. In particular, the previous reports presented the metal-air battery structure, with a specific energy overall output of 765 W h kg. This paper is focused mainly on the MAB, which employed nanocomposite polymeric electrodes with a proven energy density of 545 W h kg and a charge capacity of 817 mA h g when electrolyzed at a cycling current density of 7 mA cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371094PMC
http://dx.doi.org/10.3390/polym14153187DOI Listing

Publication Analysis

Top Keywords

polymeric electrodes
8
renewable power
8
charge capacity
8
energy density
8
high-energy-density magnesium-air
4
magnesium-air battery
4
battery nanostructured
4
nanostructured polymeric
4
electrodes greenhouse
4
greenhouse emissions
4

Similar Publications

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.

Natl Sci Rev

January 2025

State Key Laboratory of Advanced Chemical Power Sources, Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes.

View Article and Find Full Text PDF

Constructing new-generation ion exchange membranes under confinement regime.

Natl Sci Rev

February 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.

View Article and Find Full Text PDF

Challenges and opportunities in 2D materials for high-performance aqueous ammonium ion batteries.

Natl Sci Rev

February 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Aqueous ammonium ion batteries (AAIBs) have attracted considerable attention due to their high safety and rapid diffusion kinetics. Unlike spherical metal ions, NH forms hydrogen bonds with host materials, leading to a unique storage mechanism. A variety of electrode materials have been proposed for AAIBs, but their performance often falls short in terms of future energy storage needs.

View Article and Find Full Text PDF

Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing.

Biosens Bioelectron

January 2025

School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China. Electronic address:

Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!