The polyethylene terephthalate (PET) beverage bottle is one of the most common beverage packages in the world, but the bottom of the PET bottle tends to crack due to excessive stress. In this paper, through numerical simulation and finite element analysis, the mechanical properties of four typical geometric models of bottle bottom are studied, and it is determined that "claw flap bottle bottom (CF-bottom)" has the best structure. Then, the shapes of four bottle bottom structures are fine-tuned by using the automatic optimization method. Under the premise of the same material quality, the surface maximum principal stress, the overall maximum principal stress, and the total elastic strain energy of the bottle bottom are reduced by 46.39-71.81%, 38.16-71.50%, and 38.56-61.38%, respectively, while the deformation displacement is also reduced by 0.63 mm-3.43 mm. In contrast to other papers, this paper dispenses with the manual adjustment of various variables, instead adopting automatic shape optimization to obtain a more accurate model. The percentage of maximum principal stress reduction is remarkable, which provides a feasible theoretical guidance for the structural optimization of PET bottle bottom in the production process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371001PMC
http://dx.doi.org/10.3390/polym14153174DOI Listing

Publication Analysis

Top Keywords

bottle bottom
24
pet bottle
12
maximum principal
12
principal stress
12
bottle
8
finite element
8
bottom
7
comparison optimization
4
optimization structure
4
pet
4

Similar Publications

Pore engineering of Porous Materials: Effects and Applications.

ACS Nano

August 2024

College of Energy Materials and Chemistry, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.

Porous materials, characterized by their controllable pore size, high specific surface area, and controlled space functionality, have become cross-scale structures with microenvironment effects and multiple functions and have gained tremendous attention in the fields of catalysis, energy storage, and biomedicine. They have evolved from initial nanopores to multiscale pore-cavity designs with yolk-shell, multishells, or asymmetric structures, such as bottle-shaped, multichambered, and branching architectures. Various synthesis strategies have been developed for the interfacial engineering of porous structures, including bottom-up approaches by using liquid-liquid or liquid-solid interfaces "templating" and top-down approaches toward chemical tailoring of polymers with different cross-linking degrees, as well as interface transformation using the Oswald ripening, Kirkendall effect, or atomic diffusion and rearrangement methods.

View Article and Find Full Text PDF

Directional freezing and thawing of biologics in drug substance bottles.

Eur J Pharm Biopharm

October 2024

ten23 health AG, Mattenstrasse 22, 4058 Basel, Switzerland; Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany. Electronic address:

Biological drug substance (DS) is typically stored frozen to increase stability. However, freezing and thawing (F/T) of DS can impact product quality and therefore F/T processes need to be controlled. Because active F/T systems for DS bottles are lacking, freezing is often performed uncontrolled in conventional freezers, and thawing at ambient temperature or using water baths.

View Article and Find Full Text PDF

During the machine vision inspection of the inner section of bottle caps within pharmaceutical packaging, the unique conca bottom and convex side walls often create obstructions to the illumination. Consequently, this results in challenges such as irregular background and diminished feature contrast in the image, ultimately leading to the misidentification of defects. As a solution, a vision system characterized by a Low-Angle and Large Divergence Angle (LALDA) is presented in this paper.

View Article and Find Full Text PDF

Empty large volume parenteral (LVP) bottle has irregular shape and narrow opening, and its detection accuracy of the foreign substances at the bottom is higher than that of ordinary packaging bottles. The current traditional detection method for the bottom of LVP bottles is to directly use manual visual inspection, which involves high labor intensity and is prone to visual fatigue and quality fluctuations, resulting in limited applicability for the detection of the bottom of LVP bottles. A geometric constraint-based detection model (GCBDM) has been proposed, which combines the imaging model and the shape characteristics of the bottle to construct a constraint model of the imaging parameters, according to the detection accuracy and the field of view.

View Article and Find Full Text PDF

Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!