A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechano-Chemical Properties of Electron Beam Irradiated Polyetheretherketone. | LitMetric

In this study, the mechano-chemical properties of aromatic polymer polyetheretherketone (PEEK) samples, irradiated by high energy electrons at 200 and 400 kGy doses, were investigated by Nanoindentation, Brillouin light scattering spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Irradiating electrons penetrated down to a 5 mm depth inside the polymer, as shown numerically by the monte CArlo SImulation of electroN trajectory in sOlids (CASINO) method. The irradiation of PEEK samples at 200 kGy caused the enhancement of surface roughness by almost threefold. However, an increase in the irradiation dose to 400 kGy led to a decrease in the surface roughness of the sample. Most likely, this was due to the processes of erosion and melting of the sample surface induced by high dosage irradiation. It was found that electron irradiation led to a decrease of the elastic constant , as well as a slight decrease in the sample's hardness, while the Young's elastic modulus decrease was more noticeable. An intrinsic bulk property of PEEK is less radiation resistance than at its surface. The proportionality constant of Young's modulus to indentation hardness for the pristine and irradiated samples were 0.039 and 0.038, respectively. In addition, a quasi-linear relationship between hardness and Young's modulus was observed. The degradation of the polymer's mechanical properties was attributed to electron irradiation-induced processes involving scission of macromolecular chains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370724PMC
http://dx.doi.org/10.3390/polym14153067DOI Listing

Publication Analysis

Top Keywords

mechano-chemical properties
8
peek samples
8
400 kgy
8
surface roughness
8
led decrease
8
hardness young's
8
young's modulus
8
electron
4
properties electron
4
electron beam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!