A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer. | LitMetric

The power-law model for composite conductivity is expanded for graphene-based samples using the effects of interphase, tunnels and net on the effective filler fraction, percolation start and "b" exponent. In fact, filler dimensions, interphase thickness, tunneling distance and net dimension/density express the effective filler fraction, percolation start and "b" exponent. The developed equations are assessed by experimented values from previous works. Additionally, the effects of all parameters on "b" exponent and conductivity are analyzed. The experimented quantities of percolation start and conductivity confirm the predictability of the expressed equations. Thick interphase, large tunneling distance, high aspect ratio and big nets as well as skinny and large graphene nano-sheets produce a low "b" and a high conductivity, because they improve the conduction efficiency of graphene nets in the system. Graphene-filled nanocomposites can be applied in the biosensing of breast cancer cells and thus the developed model can help optimize the performance of biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370558PMC
http://dx.doi.org/10.3390/polym14153057DOI Listing

Publication Analysis

Top Keywords

percolation start
12
"b" exponent
12
power-law model
8
biosensing breast
8
breast cancer
8
effective filler
8
filler fraction
8
fraction percolation
8
start "b"
8
tunneling distance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!