One of the disadvantages of reinforced concrete is the large weight of structures due to the steel reinforcement. A way to overcome this issue and develop new types of reinforcing elements is by using polymer composite reinforcement, which can successfully compensate for the shortcomings of steel reinforcement. Additionally, a promising direction is the creation of variotropic (transversely isotropic) building elements. The purpose of this work was to numerically analyze improved short bending concrete elements with a variotropic structure reinforced with polymer composite rods and to determine the prospects for the further extension of the results obtained for long-span structures. Numerical models of beams of a transversally isotropic structure with various types of reinforcement have been developed in a spatially and physically nonlinear formulation in ANSYS software considering cracking and crashing. It is shown that, in combination with a stronger layer of the compressed zone of the beam, carbon composite reinforcement has advantages and provides a greater bearing capacity than glass or basalt composite. It has been proven that the use of the integral characteristics of concrete and the deflections of the elements are greater than those when using the differential characteristics of concrete along the height of the section (up to 5%). The zones of the initiation and propagation of cracks for different polymer composite reinforcements are determined. An assessment of the bearing capacity of the beam is given. A significant (up to 146%) increase in the forces in the reinforcing bars and a decrease in tensile stresses (up to 210-230%) were established during the physically non-linear operation of the concrete material. The effect of a clear redistribution of stresses is in favor of elements with a variotropic cross section in height.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370235 | PMC |
http://dx.doi.org/10.3390/polym14153051 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFJ Coll Physicians Surg Pak
January 2025
Department of Stomatology, The Second People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
Objective: To investigate the effects of bulk-fill, resin-based composite types (high or low viscosity) on the internal adaptation of Class V restorations.
Study Design: Experimental study. Place and Duration of the Study: Hefei Stomatological Hospital, Hefei, China, from October 2022 to December 2023.
Biopolymers
March 2025
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico.
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.
View Article and Find Full Text PDFAnal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!