Calcium phosphate cements are used in dentistry and orthopedics to repair and reconstruct bone defects. The properties of these bone cements can be improved by introducing additives into their composition. One favorable additive is chitosan, which can be beneficial but can also cause considerable damage if it has a high load, thus, limiting its clinical applicability and performance. That is why understanding chitosan's role in cement composition is an important issue when developing new materials. The present work uses low-field nuclear magnetic resonance (NMR) relaxometry to investigate the effect introduced by the addition of chitosan on the hardening process of calcium phosphate cement. Two samples, prepared with and without chitosan, were comparatively investigated during the first six minutes of hardening. The liquid evolution inside these samples was monitored using transverse relaxation time distributions. It demonstrated an acceleration effect on the hardening dynamics introduced by the presence of chitosan. Furthermore, it was shown that even after one hour of hardening, there were still unreacted monomers inside the bone cement and their amount was reduced in the presence of chitosan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370822PMC
http://dx.doi.org/10.3390/polym14153042DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
chitosan hardening
8
hardening dynamics
8
phosphate cement
8
nmr relaxometry
8
presence chitosan
8
chitosan
6
dynamics calcium
4
cement
4
cement low-field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!