Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 () gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of , RNA sequencing was performed on -positive and -negative primary osteosarcoma tissues isolated from -mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in -positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (). Deletion of in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368984 | PMC |
http://dx.doi.org/10.3390/ijms23158616 | DOI Listing |
Phytomedicine
December 2024
Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Xining, Qinghai, China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China. Electronic address:
Osteosarcoma is an aggressive malignant bone tumor with an obscure etiology, as well as high prevalence and poor prognosis in children and adolescents. We aimed to investigate the pathogenesis of osteosarcoma through a comprehensive analysis of the tumor immune microenvironment (TIME) using multiple single-cell RNA sequencing datasets. SLC25A5, a gene implicated in cellular aging, significantly influenced osteosarcoma development by altering the TIME and promoting CD8+ T cell exhaustion, which contributed to reduced chemosensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Joint Surgery, The Second Affiliated Hospital of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, 226001, Jiangsu, P.R. China.
Background: Abnormal expression of Zinc finger (ZNF) genes is commonly observed in osteosarcoma (OS), the most prevalent malignant bone tumor in children and teenagers. This project focused on the role of ZNF560 in the progress of OS.
Methods: The published datasets including TCGA-SARC and GSE99671 was utilized to screen out the abnormal expression of ZNF560 and associated gene patterns in sarcoma and OS tissues.
Nat Commun
January 2025
Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches.
View Article and Find Full Text PDFScience
January 2025
Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Pediatric solid tumors are a leading cause of childhood disease mortality. In this work, we examined germline structural variants (SVs) as risk factors for pediatric extracranial solid tumors using germline genome sequencing of 1765 affected children, their 943 unaffected parents, and 6665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and increased risk of solid tumors in male children.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!