Nephrotoxicity is the dose-limiting side-effect of the chemotherapeutic agent cisplatin (Cp). Recent evidence points to renal protective actions of G protein-coupled estrogen receptor 1 (GPER1). In addition, it has been shown that GPER1 signaling elicits protective actions against acute ischemic injuries that involve multiple organ systems; however, the involvement of GPER1 signaling in Cp-induced acute kidney injury (AKI) remains unclear. This study tested whether genetic deletion of GPER1 exacerbates Cp-induced AKI in male mice. We subjected male mice, homozygous (homo) and heterozygous (het) knockout for the GPER1 gene, and wild-type (WT) littermates to Cp or saline injections and assessed markers for renal injury on the third day after injections. We also determined serum levels of proinflammatory markers in saline and Cp-treated mice. Given the protective role of heme oxygenase-1 (HO-1) in Cp-mediated apoptosis, we also investigated genotypic differences in renal HO-1 abundance, cell death, and proliferation by Western blotting, the TUNEL assay, and Ki67 immunostaining, respectively. Cp increased serum creatinine, urea, and neutrophil gelatinase-associated lipocalin (NGAL) levels, the renal abundance of kidney injury molecule-1, and NGAL in all groups. Cp-induced AKI resulted in comparable histological evidence of injury in all genotypes. WT and homo mice showed greater renal HO-1 abundance in response to Cp. Renal HO-1 abundance was lower in Cp-treated homo, compared to Cp-treated WT mice. Of note, GPER1 deletion elicited a remarkable increase in renal apoptosis; however, no genotypic differences in cell proliferation were observed. Cp augmented kidney Ki67-positive counts, regardless of the genotype. Overall, our data do not support a role for GPER1 in mediating Cp-induced renal injury. GPER1 deletion promotes renal apoptosis and diminishes HO-1 induction in response to Cp, suggesting that GPER1 may play cytoprotective and anti-apoptotic actions in AKI. GPER1-induced regulation of HO-1 and apoptosis may offer novel therapeutic targets for the treatment of AKI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368456 | PMC |
http://dx.doi.org/10.3390/ijms23158284 | DOI Listing |
Heliyon
January 2025
Division of HPB and Transplant Surgery, Department of Surgery, Transplant Institute, Erasmus Medical Center, Rotterdam, the Netherlands.
Background: Normothermic machine perfusion (NMP) provides a platform for kidney quality assessment. Donation after circulatory death (DCD) donor kidneys are associated with great ischemic injury and high intrarenal resistance (IRR). This experimental study aims to investigate the impact of different perfusion pressures on marginal kidney function and injury during NMP.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Urology, Beilun People's Hospital, Ningbo, Zhejiang, China.
Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.
View Article and Find Full Text PDFJ Med Biochem
November 2024
The First Affiliated Hospital of Anhui Medical University, Department of Emergency Intensive Care Unit, Hefei, China.
Background: This study investigates the correlation between the difference in hematocrit (HCT) and serum albumin (ALB) levels (HCT-ALB), muscle tissue oxygen saturation (SmtO2), capillary refill time (CRT), and blood lactate (Lac) with the severity of renal function damage and prognosis in patients with septic shock.
Methods: Conducted from February 2022 to February 2024, this study included 116 septic shock patients treated at the First Affiliated Hospital of Anhui Medical University. Patients were divided into groups based on whether they developed acute kidney injury: 40 patients were included in the acute kidney injury group, and the remaining 76 were placed in the non-kidney injury group.
Med Sci Sports Exerc
January 2025
Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM.
Purpose: To test the hypothesis that ibuprofen ingestion exacerbates markers of acute kidney injury (AKI), gastrointestinal (GI) injury, and endotoxemia after running in the heat.
Methods: Using a randomized double-blind crossover design, eleven physically active individuals (six women) ingested 600 mg of ibuprofen or placebo 12- and one-hour prior to running one-hour in a heated chamber (35 °C, 20%-60% R.H.
FEBS J
January 2025
Department of Urology, Renmin Hospital of Wuhan University, China.
In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!