The gut microbiota encodes a broad range of enzymes capable of synthetizing various metabolites, some of which are still uncharacterized. One well-known class of microbiota-derived metabolites are the short-chain fatty acids (SCFAs) such as acetate, propionate, butyrate and valerate. SCFAs have long been considered a mere waste product of bacterial metabolism. Novel results have challenged this long-held dogma, revealing a central role for microbe-derived SCFAs in gut microbiota-host interaction. SCFAs are bacterial signaling molecules that act directly on host T lymphocytes by reprogramming their metabolic activity and epigenetic status. They have an essential biological role in promoting differentiation of (intestinal) regulatory T cells and in production of the anti-inflammatory cytokine interleukin-10 (IL-10). These small molecules can also reach the circulation and modulate immune cell function in remote tissues. In experimental models of autoimmune and inflammatory diseases, such as inflammatory bowel disease, multiple sclerosis or diabetes, a strong therapeutic potential of SCFAs through the modulation of effector T cell function was observed. In this review, we discuss current research activities toward understanding a relevance of microbial SCFA for treating autoimmune and inflammatory pathologies from in vitro to human studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368239PMC
http://dx.doi.org/10.3390/ijms23158272DOI Listing

Publication Analysis

Top Keywords

short-chain fatty
8
fatty acids
8
cell function
8
autoimmune inflammatory
8
scfas
5
regulation cd4
4
cd4 cd8
4
cd8 cell
4
cell biology
4
biology short-chain
4

Similar Publications

The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.

View Article and Find Full Text PDF

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Beyond the Hayflick Limit: How Microbes Influence Cellular Aging.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, The Islamic Republic of Iran. Electronic address:

Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Resistant starch inhibits high-fat diet-induced oncogenic responses in the colon of C57BL/6 mice.

J Nutr Biochem

January 2025

United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58203.

The beneficial effects of dietary fiber for colon health may be due to short chain fatty acids (SCFAs), such as butyrate, produced by colonic bacterial fermentation. In contrast, obesogenic diet induced obesity is linked to increased colon cancer incidence. We hypothesize that increasing fiber intake promotes healthy microbiome and reduces bacterial dysbiosis and oncogenic signaling in the colon of mice fed an obesogenic diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!