Aluminide Diffusion Coatings on IN 718 by Pack Cementation.

Materials (Basel)

Section IX-Materials Science and Engineering, Technical Sciences Academy of Romania, 030167 Bucharest, Romania.

Published: August 2022

AI Article Synopsis

  • The paper examines both direct and indirect methods for synthesizing nickel aluminides using pack cementation, focusing on pure nickel and the IN 718 superalloy.
  • The study highlights the formation of diffusion porosity due to the Kirkendall-Frenkel effect, noting that higher temperatures above aluminum's melting point lead to decreased porosity.
  • It also reveals that altering the aluminum to nickel weight percentage ratio in the diffusion coating significantly enhances the performance of nickel-based superalloys like IN 718, particularly when using different aluminum and iron powder mixtures during the process.

Article Abstract

This paper addressed the issues of both direct and indirect synthesis of Ni aluminides by pack cementation (pure Ni and IN 718 superalloy). On the Al-Ni diffusion twosome under pressure, at temperatures below and above the Al melting temperature, the appearance and evolution of diffusion porosity because of the Kirkendall-Frenkel effect manifestation was highlighted. It has been confirmed that, as the temperature rises above the Al melting temperature, the porosity decreases. Nickel-based superalloys, and in particular IN 718, significantly increase their performance by increasing the aluminides proportion in the top diffusion coating. This is made possible by changing the value of the Al and Ni weight percentage ratio in this area (noted as Al/Ni). In the case of the diffusion twosome between IN 718 and pack aluminizing mixtures, having in their composition as active components Al powder, Ferroaluminum (FeAl40) or mixtures of Al and Fe powders, at processing temperatures above the Al melting temperature, by modifying the active component of the mixture, substantial changes in the Al/Ni values were observed, as well as in the maximum %Al in the diffusion coating and of its thickness. It was found that, when switching from Al to FeAl40 or powder mixture (Al + Fe), the Al/Ni value changes between 3.43 and 1.01, from initial subunit values. The experiments confirmed that the highest %Al in the top aluminized diffusion coating, for IN 718, was obtained if the powder mixture contained 66.34 wt.% Al.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369608PMC
http://dx.doi.org/10.3390/ma15155453DOI Listing

Publication Analysis

Top Keywords

melting temperature
12
diffusion coating
12
718 pack
8
pack cementation
8
diffusion twosome
8
temperatures melting
8
powder mixture
8
diffusion
6
0
5
aluminide diffusion
4

Similar Publications

The purpose of this study was to improve the quality of frozen-thawed canine spermatozoa through the optimization of glycerol concentration (GC) and freezing rate in the semen freezing protocol. Ejaculates from nine dogs were diluted with an extender containing 0%, 1.5%, 3%, 6%, or 9% glycerol.

View Article and Find Full Text PDF

A new centrifugal hypergravity piston cylinder apparatus.

Rev Sci Instrum

January 2025

Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China.

Hypergravity high-temperature and high-pressure experiments are a powerful tool for studying geological processes over long periods. A new centrifugal hypergravity piston cylinder apparatus has been developed for beam centrifuge. The unique design of this centrifugal hypergravity piston cylinder apparatus is that the hydraulic system and the press are relatively independent.

View Article and Find Full Text PDF

We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.

View Article and Find Full Text PDF

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Supercooling tolerance in the Mexican lizard Barisia imbricata (Squamata: Anguidae).

J Therm Biol

January 2025

Laboratorio de Recursos Naturales, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico. Electronic address:

Environmental temperature impacts the physiological processes of reptiles, determines their hours of activity per day, and may constrain their ability to meet critical ecological requirements. When environmental temperatures reach freezing, a few lizard species exhibit two mechanisms (supercooling and freezing tolerance) to survive freezing, and these two processes depend on cryoprotective molecules, such as glucose. Organisms produce high glucose concentrations to reach lower than normal crystallisation points, and this blood glucose concentration can double after freezing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!