This paper explores the modeling of physical phenomena that occur in clothing that affect the safety and biophysical comfort of the user. Three-dimensional models of textile assemblies with complex morphology used in firefighters' multilayer protective clothing were designed in a CAD environment. The main goal of the research was to design and experimentally verify (by thermography) the models in terms of simulations when the heat transfer occurs through them in selected ambient conditions using the finite volume method. The designed models took into account the subtle differences in the geometry of selected assemblies determined by high-resolution X-ray microtomography. The designed models made it possible to calculate heat transport with a difference of about 2% to 5% in comparison to experiment that depend on the ambient conditions and the complexity of the model geometry. Moreover, the comparison of the simulation results with the experimental outcomes shows that the mapping of subtle differences in the internal structure of the assemblies in the designed models allows us to observe differences in the modeled heat transfer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369631 | PMC |
http://dx.doi.org/10.3390/ma15155417 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Laghman University, Mehtarlam City, Laghman, 2701, Afghanistan.
Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing, 100193, China.
To solve the existing problems of low yield, uneven quality, and single form of industrially scrambled eggs, we have developed a continuous high-output steam scrambled egg device based on the principle of steam injected. By establishing calibration curves for egg, oil, and steam flow rates, determining the key parameters of the equipment, and simulating the heat transfer process between steam and egg by Computational Fluid Dynamics (CFD), we created the device and verified its production performance. The results show that the capacity of this device can reach 104.
View Article and Find Full Text PDFSci Rep
December 2024
School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Qom University of Technology, Qom, 37195-1519, Iran.
This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.
View Article and Find Full Text PDFJ Food Sci
December 2024
Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Microstructural properties of wheat-based food materials change during baking. These alterations affect the final product's mechanical properties, physical attributes, and consumer satisfaction. Image processing and pore network modeling were used to analyze the variations in a cookie's microstructural properties during baking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!