Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several advantages of supplementary cementitious materials (SCMs) have led to widespread use in the concrete industry. Many various SCMs with different characteristics are used to produce sustainable concrete. Each of these materials has its specific properties and therefore plays a different role in enhancing the mechanical properties of concrete. Multiple and often conflicting demands of concrete properties can be addressed by using combinations of two or more SCMs. Thus, understanding the effect of each SCM, as well as their combination in concrete, may pave the way for further utilization. This study aims to develop a robust and time-saving method based on Machine Learning (ML) to predict the compressive strength of concrete containing binary SCMs at various ages. To do so, a database containing a mixture of design, physical, and chemical properties of pozzolan and age of specimens have been collected from literature. A total of 21 mix design containing binary mixes of fly ash, metakaolin, and zeolite were prepared and experimentally tests to fill the possible gap in the literature and to increase the efficiency and accuracy of the ML-based model. The accuracy of the proposed model was shown to be accurate and ML-based model is able to predict the compressive strength of concrete containing any arbitrary SCMs at ay ages precisely. By using the model, the optimum replacement level of any combination of SCMs, as well as the behavior of binary cementitious systems containing two different SCMs, can be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369809 | PMC |
http://dx.doi.org/10.3390/ma15155336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!