We report on a comprehensive study of laser ablation and micromachining of alumina using a high-power 1030 nm ultrashort-pulsed laser. By varying laser power up to 150 W, pulse duration between 900 fs and 10 ps, repetition rates between 200 kHz and 800 kHz), spatial pulse overlap between 70% and 80% and a layer-wise rotation of the scan direction, the ablation efficiency, ablation rate and surface roughness are determined and discussed with respect to an efficient and optimized process strategy. As a result, the combination of a high pulse repetition rate of 800 kHz and the longest evaluated pulse duration of 10 ps leads to the highest ablation efficiency of 0.76 mm3/(W*min). However, the highest ablation rate of up to 57 mm3/min is achieved at a smaller repetition rate of 200 kHz and the shortest evaluated pulse duration of 900 fs. The surface roughness is predominantly affected by the applied laser fluence. The application of a high repetition rate leads to a small surface roughness Ra below 2 μm even for the usage of 150 W laser power. By an interlayer rotation of the scan path, optimization of the ablation characteristics can be achieved, while an interlayer rotation of 90° leads to increasing the ablation rate, the application of a rotation angle of 11° minimizes the surface roughness. The evaluation by scanning electron microscopy shows the formation of thin melt films on the surface but also reveals a minimized heat affected zone for the in-depth modification. Overall, the results of this study pave the way for high-power ultrashort-pulsed lasers to efficient, high-quality micromachining of ceramics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369604 | PMC |
http://dx.doi.org/10.3390/ma15155328 | DOI Listing |
Front Oral Health
January 2025
Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States.
Introduction: Previous studies have shown () esterase is a key mediator of dental composite biodegradation, which can contribute to recurrent caries. This study is to investigate the inhibitory effects of a novel Chemically-Modified-Curcumin (CMC 2.24) on esterase activities and related dental material biodegradation.
View Article and Find Full Text PDFThis paper employed a two-color double-pulse femtosecond laser (TDFL) technology for surface processing of carbon fiber reinforced polymers (CFRP). By exploring the changes in ablation thresholds for resin and carbon fiber under varying wavelengths and pulse numbers, optimal wavelength combinations were identified. Adjustments to processing parameters and pulse delay enabled precise removal of the CFRP surface, targeting resin while causing no damage to the underlying carbon fibers.
View Article and Find Full Text PDFWe present a high-performance Ge/Si PIN photodetector that leverages the advanced Ge/Si hetero-bonding method. The sputtered microcrystalline Ge is utilized as the interlayer, in conjunction with Smart-Cut technology, to fabricate high-quality Si-based Ge films. The exfoliated Ge film exhibits a surface roughness of 0.
View Article and Find Full Text PDFThis paper investigated the optimization of InGaAs/GaAs metamorphic buffer and its application to LPCs (laser power converters). Firstly, InGaAs (18%) metamorphic buffer with step (S), step + overshoot (SO), step + reverse (SR), and step + reverse + overshoot (SRO) structures were investigated by X-ray, AFM and TEM, respectively. Moreover, an InGaAs (24%) SRO buffer structure with a relaxation of 94.
View Article and Find Full Text PDFFourth-generation synchrotron sources promise an enormous increase in the spatial coherence of X-ray radiation. In the EUV to soft X-ray range, the spatial coherence could reach almost 100% in both the horizontal and vertical directions. Identifying and understanding potential sources of degradation in the spatial coherence of X-rays transported along the beamline is critical to enable optimal performance for the experiments at the beamlines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!