Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this research was to study the wettability and solderability of SiC ceramics by the use of an active solder of the type Sn5Sb3Ti in a vacuum by electron beam heating. This solder exerts a narrow melting interval, and only one thermal effect, a peritectic reaction, was observed. The liquidus temperature of the solder is approximately 243 °C. The solder consists of a tin matrix where the Ti(Sb,Sn) and TiSbSn phases are precipitated. The solder wettability on a SiC substrate decreases with decreasing soldering temperature. The best wetting angle of 33° was obtained in a vacuum at the temperature of 950 °C. The bond between the SiC ceramics and the solder was formed due to the interaction of Ti and Ni with silicon contained in the SiC ceramics. The formation of new TiSi and TiNiSi phases, which form the reaction layer and thus ensure the bond formation, was observed. The bond with Ni is formed due to the solubility of Ni in the tin solder. Two phases, namely the NiSn and NiSn phases, were identified in the transition zone of the Ni/Sn5Sb3Ti joint. The highest shear strength, around 40 MPa, was attained at the soldering temperature of 850 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9369714 | PMC |
http://dx.doi.org/10.3390/ma15155301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!