The Long Goodbye: Finally Moving on from the Relative Potency Approach to a Mixtures Approach for Polycyclic Aromatic Hydrocarbons (PAHs).

Int J Environ Res Public Health

Environmental Health Program, Health Canada, Halifax, NS B3J 3Y6, Canada.

Published: August 2022

For the past several decades, a relative potency approach has been used to estimate the human health risks from exposure to polycyclic aromatic hydrocarbon (PAH) mixtures. Risk estimates are derived using potency equivalence factors (PEFs; also called relative potency factors [RPFs]), based on the ratio of selected PAHs to benzo[a]pyrene (BaP), expressed qualitatively by orders of magnitude. To quantify PEFs for 18 selected carcinogenic PAHs, a systematic approach with a priori and dose response criteria was developed, building on draft work by the US EPA in 2010 and its review by US EPA Science Advisory Board (SAB) in 2011. An exhaustive search for carcinogenicity studies that included both target PAHs and BaP with environmentally relevant exposure routes found only 48 animal bioassay datasets (mostly pre-1992 based on skin painting). Only eight datasets provided adequate low-response data, and of these only four datasets were appropriate for modeling to estimate PEFs; only benzo[b]fluoranthene and cyclopenta[c,d]pyrene had a PEF that could be quantified. Thus, current knowledge of PAH carcinogenicity is insufficient to support quantitative PEFs for PAH mixtures. This highlights the long-acknowledged need for an interdisciplinary approach to estimate risks from PAH mixtures. Use of alternative and short-term toxicity testing methods, improved mixture characterization, understanding the fate and bioavailability of PAH mixtures, and understanding exposure route-related differences in carcinogenicity are discussed as ways to improve the understanding of the risks of PAHs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368405PMC
http://dx.doi.org/10.3390/ijerph19159490DOI Listing

Publication Analysis

Top Keywords

pah mixtures
16
relative potency
12
potency approach
8
polycyclic aromatic
8
approach estimate
8
approach
5
mixtures
5
pahs
5
pah
5
long goodbye
4

Similar Publications

The paper deals with an analysis of the amount of 16 polycyclic aromatic hydrocarbons (PAHs (Polycyclic aromatic hydrocarbons-16 defined by US EPA.)) released from reclaimed asphalt mixtures used in base layers of road surfaces and in binder layers in road construction using cold in-place recycling. For the ten samples tested, the sum of 16 PAHs was determined directly for the crushed asphalt mixture and for its 24-h leachate.

View Article and Find Full Text PDF

Hydrogen-localization Transfer Regulation in 3D COFs Enhances Photocatalytic Acetylene Semi-hydrogenation to Ethylene.

Angew Chem Int Ed Engl

January 2025

South China Normal University, school of chemistry, No. 378, Waihuan West Road, Panyu District, 510006, Guangzhou, CHINA.

In this work, a series of new crystalline three-dimensional covalent organic frameworks (3D COFs) based on [8+4] construction was designed and successfully realized efficient photocatalytic acetylene (C2H2) hydrogenation to ethylene (C2H4). By regulating the hydrogen-localization transfer effect in these 3D COFs,the Cz-Co-COF-H containing cobalt glyoximate active centers exhibited excellent C2H2-to-C2H4 performance, with an average C2H4 yield of 1755.33 μmol g-1 h-1 in pure C2H2, also showed near 100% conversion of C2H2 in 1% C2H2 contained crude C2H4 mixtures (industry-relevant conditions), and finally obtain polymer grade C2H4.

View Article and Find Full Text PDF

The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.

View Article and Find Full Text PDF

Joint association of polycyclic aromatic hydrocarbon and heavy metal exposures with sex steroid hormones in children and adolescents aged 6-19 years in NHANES 2013-2016.

Environ Monit Assess

December 2024

Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.

Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures.

View Article and Find Full Text PDF

To our knowledge, this study presents the first implementation of wavelength-resolved resonance-enhanced multiphoton ionization (REMPI) spectroscopy under atmospheric pressure ionization conditions using a high-resolution mass spectrometric system. Atmospheric pressure laser ionization MS spectroscopic measurements were conducted on over 70 different polycyclic aromatic hydrocarbons (PAHs) and hetero-PAHs (N, S, and O) in standard solutions, as well as three complex PAH-containing samples. The results demonstrate the successful transfer of REMPI spectroscopy from vacuum to atmospheric pressure conditions, maintaining spectral integrity without significant band broadening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!