The catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol under mild conditions is an attractive topic in biorefinery. Herein, mesoporous Zr-containing hybrids (Zr-hybrids) with a high surface area (281.9−291.3 m2/g) and large pore volume (0.49−0.74 cm3/g) were prepared using the biomass-derived 5-sulfosalicylic acid as a ligand, and they were proven to be highly efficient for the Meerwein−Ponndorf−Verley reduction of furfural to furfuryl alcohol at 110 °C, with the highest furfuryl alcohol yield reaching up to 97.8%. Characterizations demonstrated that sulfonic and carboxyl groups in 5-sulfosalicylic acid molecules were coordinated with zirconium ions, making zirconium ions fully dispersed, thus leading to the formation of very fine zirconia particles with the diameter of <2 nm in mesoporous Zr-hybrids. The interaction between the 5-sulfosalicylic acid ligands and zirconium ions endowed mesoporous Zr-hybrids with relatively higher acid strength but lower base strength, which was beneficial for the selective reduction of furfural to furfuryl alcohol. A recycling study was performed over a certain mesoporous Zr-hybrid, namely meso-Zr-SA15, demonstrating that the yield and selectivity of furfuryl alcohol remained almost unchanged during the five consecutive reaction cycles. This study provides an optional method to prepare hybrid catalysts for biomass refining by using biomass-derived feedstock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368220 | PMC |
http://dx.doi.org/10.3390/ijerph19159221 | DOI Listing |
Molecules
January 2025
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
Controllable hydrogenation of carbonyl groups (C=O) is crucial for converting furfural into high-value furfuryl alcohol. Instead of traditional impregnation method, a novel Cu-based catalyst (Cu/SiO) is prepared using the ammonia evaporation method (AE) for the efficient hydrogenation of furfural to furfuryl alcohol under mild conditions. At the reaction conditions of 90 °C and 1 MPa H, the 5Cu/SiO-AE sample showed optimal performance with higher turnover frequency (36.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFJ Chem Eng Data
January 2025
LATA2M, Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire, University of Tlemcen, Post Office Box 119, Tlemcen 13000, Algeria.
The density (ρ), speed of sound (), and refractive index ( ) of ,-dimethylacetamide (DMA) with 1-butanol, 1-pentanol, furfural (FFL), or furfuryl alcohol (FA) as a function of composition and at = 293.15 to 323.15 K with an interval of 10 K and atmospheric pressure were measured.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.
View Article and Find Full Text PDFFoods
January 2025
Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil.
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of LNFCA11 and B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!