Heat shock protein 27 (HSP27) is a protein that works as a chaperone and an antioxidant and is activated by heat shock, environmental stress, and pathophysiological stress. However, HSP27 dysregulation is a characteristic of many human cancers. HSP27 suppresses apoptosis and cytoskeletal reorganization. As a result, it is recognized as a critical therapeutic target for effective cancer therapy. Despite the effectiveness of multiple HSP27 inhibitors in pre-clinical investigations and clinical trials, no HSP27 inhibitor has progressed to the anticancer phase of the development. These difficulties have mostly been attributable to existing anticancer therapies' inability to target oncogenic HSP27. Highly selective HSP27 inhibitors with higher effective-ness and low toxicity led to the development of combination techniques that include computer-aided assisted therapeutic discovery and design. This study emphasizes the most recent results and roles of HSP27 in cancer and the potential for utilizing an anticancer chemical database to uncover novel compounds to inhibit HSP27.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368632 | PMC |
http://dx.doi.org/10.3390/cells11152412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!