Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368181 | PMC |
http://dx.doi.org/10.3390/cells11152404 | DOI Listing |
J Adv Res
December 2024
Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Hongshan Laboratory, Wuhan 430071, China. Electronic address:
Mol Cell
January 2025
Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA. Electronic address:
Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition.
View Article and Find Full Text PDFEur J Hum Genet
July 2024
Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA.
Bioorg Med Chem Lett
June 2024
SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. Electronic address:
Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor.
View Article and Find Full Text PDFNat Commun
March 2024
Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (GxK) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site loop flexible, implying a distinct mechanism of substrate recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!