TAR DNA-binding protein 43 (TDP-43) is a predominant component of inclusions in the brains and spines of patients with amyotrophic lateral sclerosis (ALS). The progressive accumulation of inclusions leads to proteinopathy in neurons. We have previously shown that Met1(M1)-linked linear ubiquitin, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), is colocalized with TDP-43 inclusions in neurons from -associated familial and sporadic ALS patients, and affects NF-κB activation and apoptosis. To examine the effects of LUBAC-mediated linear ubiquitination on TDP-43 proteinopathies, we performed cell biological analyses using full-length and truncated forms of the ALS-associated Ala315→Thr (A315T) mutant of TDP-43 in Neuro2a cells. The truncated A315T mutants of TDP-43, which lack a nuclear localization signal, efficiently generated cytoplasmic aggregates that were colocalized with multiple ubiquitin chains such as M1-, Lys(K)48-, and K63-chains. Genetic ablation of or treatment with a LUBAC inhibitor, HOIPIN-8, suppressed the cytoplasmic aggregation of A315T mutants of TDP-43. Moreover, the enhanced TNF-α-mediated NF-κB activity by truncated TDP-43 mutants was eliminated in the presence of HOIPIN-8. These results suggest that multiple ubiquitinations of TDP-43 including M1-ubiquitin affect protein aggregation and inflammatory responses in vitro, and therefore, LUBAC inhibition ameliorates TDP-43 proteinopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367985 | PMC |
http://dx.doi.org/10.3390/cells11152398 | DOI Listing |
Neurol Int
December 2024
Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.
Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2024
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Although Alzheimer disease neuropathologic change (ADNC) is the most common pathology underlying clinical dementia, the presence of multiple comorbid neuropathologies is increasingly being recognized as a major contributor to the worldwide dementia burden. We analyzed 1051 subjects with specific combinations of isolated and mixed pathologies and conducted multivariate logistic regression analysis on a cohort of 4624 cases with mixed pathologies to systematically explore the independent cognitive contributions of each pathology. Alzheimer disease neuropathologic change and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) were both associated with a primary clinical diagnosis of Alzheimer disease (AD) and were characterized by an amnestic dementia phenotype, while only ADNC associated with logopenic variant primary progressive aphasia (PPA).
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
Transactive response DNA-binding protein of 43 kDa (TDP-43) is a major component of pathological inclusions in various neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The detection of TDP-43 in biofluids is crucial for the development of diagnostic and prognostic indicators of disease and therapeutic development for TDP-43-related proteinopathies. Despite its potential as a biomarker for numerous neurological disorders, the lack of a sensitive and reproducible TDP-43 assay hinders progress in TDP-43-based therapy development, underscoring the need for an effective and standardized method for accurate quantification.
View Article and Find Full Text PDFJ Biol Chem
December 2024
European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:
The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.
View Article and Find Full Text PDFPLoS Genet
December 2024
Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America.
Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!