A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Minimally Invasive Approach for Preventing White Wine Protein Haze by Early Enzymatic Treatment. | LitMetric

A Minimally Invasive Approach for Preventing White Wine Protein Haze by Early Enzymatic Treatment.

Foods

Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.

Published: July 2022

Protein stability in bottled white wine is an essential organoleptic property considered by consumers. In this paper, the effectiveness of an early enzymatic treatment was investigated by adding a food-grade microbial protease at two different stages of winemaking: (i) at cold settling, for a short-term and low temperature (10 °C) action prior to alcoholic fermentation (AF); (ii) at yeast inoculum, for a long-lasting and medium temperature (18 °C) action during AF. The results reveal that protease sufficiently preserved its catalytic activity at both operational conditions: 10 °C (during cold settling) and 18 °C (during AF). Furthermore, protease addition (dosage 50-150 μL/L) raised the alcoholic fermentation rate. The treatment at yeast inoculum (dosage 50 μL/L) had a remarkable effect in preventing haze formation, as revealed by its impact on protein instability and haze-active proteins. This minimally invasive, time and resource-saving enzymatic treatment, integrated into the winemaking process, could produce stable white wine without affecting color quality and phenol content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368000PMC
http://dx.doi.org/10.3390/foods11152246DOI Listing

Publication Analysis

Top Keywords

white wine
12
enzymatic treatment
12
minimally invasive
8
early enzymatic
8
cold settling
8
temperature °c
8
°c action
8
alcoholic fermentation
8
yeast inoculum
8
invasive approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!