retroelements are the best-known transposable elements class and are broadly distributed through fish and also individual genomes, playing an important role in their evolutionary dynamics. Several agents can stress these elements; among them, there are some parasitic compounds such as the organochlorophosphate Trichlorfon. Consequently, knowing that the organochlorophosphate Trichlorfon is indiscriminately used as an antiparasitic in aquaculture, the current study aimed to analyze the effects of this compound on the activation of the Transposable Elements (TEs) 1, 3, and 6 and the structure of heterochromatin in the mitotic chromosomes of the tambaqui (). For this, two concentrations of the pesticide were used: 30% (0.261 mg/L) and 50% (0.435 mg/L) of the recommended LC concentration (0.87 mg/L) for this fish species. The results revealed a dispersed distribution for 1 and 6 retroelements. 3 showed an increase in both marking intensity and distribution, as well as enhanced chromosomal heterochromatinization. This probably happened by the mediation of epigenetic adaptive mechanisms, causing the retroelement mobilization to be repressed. However, this behavior was most evident when Trichlorfon concentrations and exposure times were the greatest, reflecting the genetic flexibility necessary for this species to successfully adapt to environmental changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367383PMC
http://dx.doi.org/10.3390/ani12151945DOI Listing

Publication Analysis

Top Keywords

transposable elements
8
organochlorophosphate trichlorfon
8
perspective molecular
4
molecular cytogenomics
4
cytogenomics toxicology
4
toxicology epigenetics
4
epigenetics increase
4
increase heterochromatic
4
heterochromatic regions
4
regions retrotransposable
4

Similar Publications

Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.

View Article and Find Full Text PDF

Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.

View Article and Find Full Text PDF

\nKlebsiella pneumoniae is a common pathogen of healthcare-associated infections expressing a plethora of antimicrobial resistance loci, including ADP-ribosyltransferase coding genes (arr), able to mediate rifampicin resistance. The latter has activity against a broad range of microorganisms by inhibiting DNA-dependent RNA polymerases. This study aims to characterise the arr distribution and genetic context in 138 clinical isolates of K.

View Article and Find Full Text PDF

Activity of the mammalian DNA transposon piggyBat from Myotis lucifugus is restricted by its own transposon ends.

Nat Commun

January 2025

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Members of the piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained five piggyBac-derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties of piggyBat from Myotis lucifugus, the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences.

View Article and Find Full Text PDF

Investigating How Genomic Contexts Impact IS5 Transposition Within the Genome.

Microorganisms

December 2024

Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA.

Insertions of the transposable element IS5 into its target sites in response to stressful environmental conditions, DNA structures, and DNA-binding proteins are well studied, but how the genomic contexts near IS5's native loci impact its transpositions is largely unknown. Here, by examining the roles of all 11 copies of IS5 within the genome of strain BW25113 in transposition, we reveal that the most significant copy of IS5 is one nested within and oriented in the same direction as the gene, while two other copies of IS5 harboring point mutations are hardly transposed. Transposition activity is heavily reliant on the upstream promoter that drives IS5 transposase gene , with more transpositions resulting from greater promoter activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!