Background: Purine nucleosides play essential roles in cellular physiological processes and have a wide range of applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleosides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machinery involved in biosynthetic pathways.
Results: In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP-EMP), to resolve the competitive relationship between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production to 13.98-14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine intermediates.
Conclusions: Our study reveals that in silico-guided metabolic engineering successfully optimized the purine synthesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis of biotechnological products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367096 | PMC |
http://dx.doi.org/10.1186/s13068-022-02179-x | DOI Listing |
Nat Commun
January 2025
Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
Hydrogen sulfide (HS) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-HS-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine.
View Article and Find Full Text PDFClin Exp Metastasis
January 2025
Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China.
Background: In recent years, the emphasis has shifted to understanding the role of N1-methyladenosine (m1A) in tumor progression as little is known about its regulatory effect on mRNA and its role in the metastasis of colorectal cancer (CRC).
Methods: We performed methylated RNA immunoprecipitation sequencing of tumor tissues and tumor-adjacent normal tissues from three patients with CRC to determine the m1A profile of mRNA in CRC. The expression of diaphanous-related formin 3 (DIAPH3) and its correlation with clinicopathological characteristics of CRC were evaluated using immunohistochemistry and online datasets.
Neurochem Res
January 2025
Dept Intens Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453, Stadium Road, Hangzhou, Zhejiang, 310007, China.
Glioblastoma (GBM) is the most malignant type of glioma with a very poor prognosis. N6-methyladenosine (m6A) is well-documented to be involved in GBM progression, and FTO is a demethylase. GSTO1 is also associated with tumor progression.
View Article and Find Full Text PDFUnderstanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (mA) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!