This work presents novel magnetic mixed matrix poly(ethersulfone) (PES) membranes that combine the advantages of low-cost common PES polymer and low-cost iron-nickel magnetic alloys. Moreover, the presented magnetic mixed matrix PES membranes were fabricated and used without applying an external magnetic field during either the membrane casting or the separating process. The fabricated magnetic membranes were prepared using the phase inversion technique and N-methylpyrrolidone and N,N-Dimethylformamide solvents mixture with volumetric ratio 1:9 and Lithium chloride as an additive. The used iron-nickel magnetic alloys were prepared by a simple chemical reduction method with unique morphologies (FeNi; starfish-like and FeNi; necklace-like). The fabricated membranes were characterized using Scanning Electron Microscope (SEM) and Scanning-Transmission Electron Microscope (STEM) imaging, energy dispersive X-ray (EDX), Thermogravimetric (TGA), and X-ray diffraction (XRD). Also, static water contact angle, membrane thickness, surface roughness, membrane porosity, membrane tensile strength as well as Vibrating Sample Magnetometer (VSM) analysis and oxygen transition rate (OTR) were determined. Moreover, the effect of alloy concentration and using Lithium chloride as an additive on the properties of the fabricated blank PES and magnetic mixed matrix PES membranes were studied. The presented novel magnetic mixed matrix PES membranes have high coercivity up to 106 (emu/g) with 3.61 × 10 cm/cm·s OTR compared to non-oxygen permeable blank PES membranes. The presented novel magnetic mixed matrix PES membranes have good potential in (oxygen) gas separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372052 | PMC |
http://dx.doi.org/10.1038/s41598-022-16979-6 | DOI Listing |
Sci Rep
December 2024
Faculty of Education, Shinawatra University, Bangkok, Thailand.
This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China.
Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).
Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.
Int J Biol Macromol
December 2024
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland.
This study investigates the effect of fibers from cotton and polyester textiles on the properties of fiber-reinforced polypropylene (PP) composites aimed at durable and load-bearing materials. Herein we developed a process-centered strategy to introduce 52 wt% of fibers within the thermoplastic matrix, while ensuring proper interfacial coupling. We examined the mechanical, thermal, and rheological properties of composite materials that integrated cotton and polyester waste fibers into PP matrices with different coupling agents.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The transgenerational impacts of pesticide mixture on Daphnia magna (D. magna) following long-term exposure, particularly regarding transcriptomic effects, remain poorly understood. We analyzed 470 irrigation water samples from various Chinese provinces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!