Various studies have shown the importance of using different types of Zooplankton biomasses as an additional substance in the diet of fish. In addition, the drainage water of the fish cultures could be used in plant irrigation. In this study, biomasses of water flea Daphnia magna and Gammarus pulex collected and tested, for the first time, their effect against pathogenic microorganisms and on plant germination. The results showed significant antibacterial activity of D. magna and G. pulex against Staphylococcus aureus and Pseudomonas aeruginosa bacteria, as well as antifungal activity against Alternaria solani and Penicillium expansum, which gives the possibility to be used as biocontrol against these bacteria and plant pathogenic fungi. Furthermore, both animals showed positive activity in the germination rate of Vicia faba seed, reaching 83.0 ± 3.5 and 86.0 ± 3.8%, respectively. In conclusion, the biomasses of D. magna and G. pulex are promising and effective agents for their use in the medical field against some pathogenic microbes and as stimulators of plant growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372163 | PMC |
http://dx.doi.org/10.1038/s41598-022-17790-z | DOI Listing |
Sci Rep
January 2025
Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden.
Environmental variation has long been considered a key driver of evolutionary change, predicted to shape different strategies, such as genetic specialization, plasticity, or bet-hedging to maintain fitness. However, little evidence is available with regards to how the periodicity of stressors may impact fitness across generations. To address this gap, I conducted a reciprocal split-brood experiment using the freshwater crustacean, Daphnia magna, and an ecologically relevant environmental stressor, ultraviolet radiation (UVR).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Seven Past Nine GmbH, Rebacker 68, 79650 Schopfheim, Germany.
Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
The abrasion of melamine cleaning sponges release microplastic fibers (MPFs) into the environment, yet the potential risks remain unknown. Here, we evaluated the ingestion, elimination, and toxic effects of melamine MPFs on Daphnia magna through acute and chronic exposures. This new type of MPFs displayed different morphology (a combination of linear and branched fibers with a length ranging from 10 to 157 μm) from the widely-studied MPFs released from textiles (longer and thicker linear fibers but no branched fibers).
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
School of Aquatic and Fishery Sciences, College of the Environment, University of Washington, Seattle, WA 98195, USA.
We expect to develop self-sustaining extraterrestrial colonies, and they will approach being closed ecological systems. Using simple closed ecosystems containing Daphnia magna, three species of algae, and microbes, we tested multiple conditions to study long-term organism survival, which is only possible with adequate nutrient recycling. Closed and open systems behaved differently from one another at high nitrate concentrations; in closed systems, the animals were dead by day 14; in open systems, the Daphnia populations persisted beyond 273 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!