Gynogenesis is a form of parthenogenesis in which eggs require sperm for fertilization but develop to adulthood without the contribution of paternal genome information, which happens naturally in some species. In , gynogenetic diploid animals can be made experimentally. In mutagenesis strategies that only generate one allele of a recessive mutation, as might occur during gene editing, gynogenesis can be used to quickly reveal a recessive phenotype in eggs carrying a recessive mutation, thereby skipping one generation normally required to screen by conventional genetics. oocytes do not complete meiosis until shortly after fertilization, and the second polar body is retained in fertilized eggs. Using ultraviolet (UV)-irradiated sperm, fertilization can be triggered without a genetic paternal contribution. Upon applying cold shock at the proper time to such embryos, ejection of the second polar body can be suppressed and both maternal sister chromatids are retained, leading to the development of gynogenetic diploid embryos. Because the genome of the resultant animals consists of recombined sister chromatids because of crossover events during meiosis, it is not completely homozygous throughout the whole genome. Nevertheless, the genome is homozygous at some loci proximal to the centromere that are unlikely to undergo recombination during meiosis and homozygous at reduced frequency if mutations are farther from the centromere, but still generally at a scorable level. Therefore, this technique is useful for rapid screening phenotypes of recessive mutations in such regions. We describe here a step-by-step protocol to achieve cold shock-mediated gynogenesis in .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1101/pdb.prot107648 | DOI Listing |
BMC Genomics
January 2025
College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266045, China.
Plant Physiol Biochem
December 2024
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!