Spoilage potential of bacterial species from chilled vacuum-packed lamb.

Food Microbiol

Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia.

Published: October 2022

The objective of this study was to establish whether specific organisms play important roles in the spoilage rate of vacuum-packed (VP) lamb at low storage temperatures. The spoilage potential of representative organisms (n = 13) of the spoilage community of VP lamb were investigated through a series of shelf-life challenge trials. Each isolate was individually inoculated onto sterile (irradiated) and non-sterile (i.e., containing natural microbial community) VP lamb meat. Meat quality was assessed over time by measuring sensorial qualities, bacterial growth and pH. Among all test organisms, Clostridium spp. had the highest spoilage potential and had a major effect on the spoilage rate of VP lamb (based on sensory assessment). C. estertheticum caused premature 'blown pack' spoilage; however, the spoilage was delayed in a community setting. C. putrefaciens and C. algidicarnis caused premature spoilage of VP lamb independently and in a community setting. In contrast, all facultative anaerobes and Pseudomonas sp. tested were not capable of spoiling meat independently or within a community, expect for Carnobacterium divergens and Serratia spp., which spoiled meat prematurely when present in a community. Overall, these results highlight that Clostridium could be one of the main taxa driving the faster rate of quality loss of chilled VP lamb compared to beef. This research can help to inform opportunities for shelf-life extension by targeting organisms with 'high' spoilage potential, such as Clostridium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2022.104093DOI Listing

Publication Analysis

Top Keywords

spoilage potential
16
spoilage
10
vacuum-packed lamb
8
spoilage rate
8
community lamb
8
caused premature
8
community setting
8
independently community
8
lamb
7
community
6

Similar Publications

Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities.

View Article and Find Full Text PDF

Unlabelled: APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites.

View Article and Find Full Text PDF

Correlation between quality change and hydrogen sulfide in aquatic product: Detection of hydrogen sulfide and its potential applications using bigeye tuna (Thunnus obesus) model during cold storage.

Food Chem

December 2024

College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; The International Peace Maternity and Child Health Hospital, School of Medicine. Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

Hydrogen sulfide (HS) is an metabolic product of tuna during the spoilage, and relationship between HS and tuna quality has not been specifically studied. This study detected changes in HS content, HS precursor substances, and related enzymes based on the formation pathway of HS. HS content increased of tuna resulted in significant increases in contents of cystathionine β-synthase, cystathionine γ-lyase, 3-mercapto pyruvate sulfotransferase, cysteine aminotransferase and methionine, while content of cysteine decreased which provided HS formation.

View Article and Find Full Text PDF

A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.

View Article and Find Full Text PDF

Pseudomonas spp. are a psychrotrophic species associated with milk spoilage caused by its enzymatic activities. The aim of this study was to identify Pseudomonas spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!