The emergence of the uniquely human α7 nicotinic acetylcholine receptor gene and its roles in inflammation.

Gene

The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, India; Department of Cardiovascular Medicine, The 1st Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China. Electronic address:

Published: October 2022

The uniquely human CHRFAM7A gene is evolved from the fusion of two partially duplicated genes, ULK4 and CHRNA7. Transcription of CHRFAM7A gene produces a 1256-bp open reading frame (ORF) that encodes duplicate α7-nAChR (dup-α7-nAChR), in which a 27-aminoacid peptide derived from ULK4 gene replaces the 146-aminoacid N-terminal extracellular domain of α7-nAChR, and the rest protein domains are exactly the same as those of α7-nAChR. In vitro, dup-α7-nAChR has been shown to form hetero-pentamer with α7-nAChR and dominant-negatively inhibits the channel functions of the latter. α7-nAChR has been shown to participate in many pathophysiological processes such as cognition, memory, neuronal degenerative disease, psychological disease, and inflammatory diseases, among others, and thus has been extensively exploited as potential therapeutic targets for many diseases. Unfortunately, many lead compounds that showed potent therapeutic effect in preclinical animal models failed clinical trials, suggesting the possibility that the contribution of the uniquely human CHRFAM7A gene may not be accounted for in the preclinical research. Here, we review the emergence of CHRFAM7A gene and its transcriptional regulation, the regulatory roles of CHRFAM7A gene in α7-nAChR-mediated cholinergic anti-inflammatory pathway, and the potential implications of CHRFAM7A gene in translational research and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146777DOI Listing

Publication Analysis

Top Keywords

chrfam7a gene
24
uniquely human
12
gene
8
human chrfam7a
8
chrfam7a
6
α7-nachr
5
emergence uniquely
4
human α7
4
α7 nicotinic
4
nicotinic acetylcholine
4

Similar Publications

We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS.

View Article and Find Full Text PDF

Human restricted gene increases brain efficiency.

Front Neurosci

April 2024

Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.

Article Synopsis
  • The study investigates the role of the CHRFAM7A gene in human neuropsychiatric disorders like Alzheimer's, schizophrenia, and anxiety, focusing on its influence on brain structure and function.
  • Researchers conducted a genotype analysis on 46 healthy subjects to compare those who carry the gene's direct allele with those who don’t, assessing neuropsychological performance and conducting MRI scans for structural brain analysis.
  • Findings from cognitive tests and MRI scans were analyzed through age-adjusted statistical methods to identify how CHRFAM7A may affect brain and cognitive functions.
View Article and Find Full Text PDF

Background: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored.

View Article and Find Full Text PDF

Genes restricted to humans may contribute to human-specific traits and provide a different context for diseases. CHRFAM7A is a uniquely human fusion gene and a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR). The α7 nAChR has been a promising target for diseases affecting cognition and higher cortical functions, however, the treatment effect observed in animal models failed to translate into human clinical trials.

View Article and Find Full Text PDF

Human-specific CHRFAM7A primes macrophages for a heightened pro-inflammatory response at the earlier stage of inflammation.

Cell Biol Int

December 2023

The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Luzhou, China.

α7-Nicotinic acetylcholine receptor (α7-nAChR) is the key effector molecule of the cholinergic anti-inflammatory pathway. Evolution has evolved a uniquely human α7-nAChR encoded by CHRFAM7A. It has been demonstrated that CHRFAM7A dominant negatively regulates the functions of α7-nAChR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!