Bioelectrochemical system (BES) is an emerging technology that can treat wastewater via microbial activity while producing energy simultaneously. The system can couple with conventional systems to improve system performance. This study aims to compare the environmental performance of BES and the integrated microbial fuel cell (MFC) systems via a life cycle assessment methodology and identify the major environmental hotspots of the system. Fifteen treatment options are assessed with the ReCiPe 2016 characterization method using SimaPro 9.2 software. The results show double chamber air-cathode microbial electrolysis cell (MEC1) and membrane distillation integrated MFC (MD + MFC) treatment options present as the most environmental favourable among the BES and integrated MFC systems, respectively, due to the offset of the environmental loads from the avoided impacts contributed by their value-added by-product, which is hydrogen fuel for MEC1 and tap water for MD + MFC. Electricity consumption dominates the environmental loads of all the BES options for up to 90% of the global warming impact category. The environmental benefits from the electricity generation of BES are minor (i.e., MFC: 0.01-2% while microbial desalination cell: 0.01-7% of the total environmental impact in a system) to offset the environmental loads incurred by the system. Platinum-based cathode incurs 2.5-24 times higher environmental burdens than non-platinum configurations in MFC under the human carcinogenic toxicity impact category. In line with Sustainable Development Goals 6 and 13, this study provides scientific references to wastewater treatment stakeholders in selecting suitable BES and integrated MFC systems to improve water sanitation and address climate change simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115778DOI Listing

Publication Analysis

Top Keywords

bes integrated
12
mfc systems
12
integrated mfc
12
environmental loads
12
environmental
9
life cycle
8
cycle assessment
8
integrated microbial
8
microbial fuel
8
fuel cell
8

Similar Publications

As the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs.

View Article and Find Full Text PDF

Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.

View Article and Find Full Text PDF

The unique layer-stacking in two-dimensional (2D) van der Waals materials facilitates the formation of nearly degenerate phases of matter and opens novel routes for the design of low-power, reconfigurable functional materials. Electrochemical ion intercalation between stacked layers offers a promising approach to stabilize bulk metastable phases and to explore the effects of extreme carrier doping and strain. However, in situ characterization methods to study the structural evolution and dynamical functional properties of these intercalated materials remains limited.

View Article and Find Full Text PDF

Electrochemical lithium extraction from hectorite ore.

Commun Chem

December 2024

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Electrochemical technologies add a unique dimension for ore refinement, representing tunable methods that can integrate with renewable energy sources and existing downstream process flows. However, the development of electrochemical extraction technologies has been impeded by the technological maturity of hydro- and pyro-metallurgy, as well as the electrical insulating properties of many metal oxide ores. The fabrication and use of carbon/insulating material composite electrodes has been a longstanding method to enable electrochemical activation.

View Article and Find Full Text PDF

Selenium treatment via integrating flow electrode capacitive deionization (FCDI) and bio-electrochemical systems (BES).

Water Res

March 2025

Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA. Electronic address:

Selenium pollution in aquatic environments poses a major global challenge, with a significant gap in effective treatment technologies. In this study, we explored a novel approach integrating flow-electrode capacitive deionization (FCDI) with bio-electrochemical systems (BES) for the removal and reduction of selenate and selenite ions in one compact reactor. Our integrated system was electricity-driven, eliminating chemical usage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!