Morpho-physiological, biochemical and molecular characterization of coastal rice landraces to identify novel genetic sources of salinity tolerance.

Plant Physiol Biochem

Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India. Electronic address:

Published: September 2022

Soil salinity is a leading cause for yield losses in rice, affecting nearly 6% of global rice cultivable area. India is host to a rich diversity of coastal rice landraces that are naturally tolerant to salinity and an untapped source to identify novel determinants of salinity tolerance. In the present study, we have assessed the relative salinity tolerance of 43 previously genotyped rice landraces at seedling stage, using thirteen morpho-physiological and biochemical parameters using a hydroponics system. Among 43 rice varieties, 25 were tolerant, 15 were moderately tolerant, 1 was moderately susceptible and 2 sensitive checks were found to be highly susceptible based on standard salinity scoring methods. In addition to previously known saline tolerant genotypes (Pokkali, FL478 and Nona Bokra), the present study has novel genotypes such as Katrangi, Orkyma, Aduisen 1, Orumundakan 1, Hoogla, and Talmugur 2 as potential sources of salinity tolerance through measurement of morpho-physiological and biochemical parameters including Na, K estimations and Na/K ratios. Further, Pallipuram Pokkali may be an important source of the tissue tolerance trait under salinity. Four marker trait associations (RM455-root Na; RM161-shoot and root Na/K ratios; RM237-salinity tolerance index) accounted for phenotypic variations in the range of 20.97-39.82%. A significant increase in root endodermal and exodermal suberization was observed in selected rice landraces under salinity. For the first time, variation in the number of suberized sclerenchymatous layers as well as passage cells is reported, in addition to expression level changes in suberin biosynthetic genes (CYP86A2, CYP81B1, CYP86A8 and PERL).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.07.028DOI Listing

Publication Analysis

Top Keywords

rice landraces
16
salinity tolerance
16
morpho-physiological biochemical
12
salinity
9
coastal rice
8
identify novel
8
sources salinity
8
biochemical parameters
8
tolerant moderately
8
na/k ratios
8

Similar Publications

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

Rice (Oryza sativa L.) is a staple food for half of the world's population, and its biofortification is a key factor in fighting micronutrient malnutrition. However, harmful heavy metals tend to accumulate in rice grains due to soil and water contamination.

View Article and Find Full Text PDF

Aerosol-producing global catastrophes such as nuclear war, super-volcano eruption, or asteroid strike, although rare, pose a serious threat to human survival. Light-absorbing aerosols would sharply reduce temperature and solar radiation reaching the earth's surface, decreasing crop productivity including for locally adapted traditional crop varieties, i.e.

View Article and Find Full Text PDF

Root apoplastic barrier mechanism: an adaptive strategy to protect against salt stress.

Mol Biol Rep

December 2024

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.

From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele.

View Article and Find Full Text PDF

Background: Assam's aromatic Joha rice is a unique rice class famous for its aroma, taste, and nutritional benefits, which fetch high market prices in domestic and international markets. Joha landraces are inherently poor yielders due to their strong aroma and predominantly photoperiod sensitivity. Hybridization involving non-aromatic HYVs improves yield with concomitant loss of quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!