Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iopamidol (IPM) is widely used in medical clinical examination and treatment and has immeasurable harm to the ecological environment. The combination of UV and sulfite (UV/sulfite) process was developed to degrade IPM in this study. In contrast to that almost no removal of IPM was observed under sulfite reduction alone, the UV/sulfite process could efficiently reductively degrade IPM with the observed rate constant (k) of 2.08 min, which was nearly 4 times that of UV irradiation alone. The major active species in the UV/sulfite process were identified as hydrated electrons (e) by employing active species scavengers. The influence of the initial pH, sulfite dosage, IPM concentration, UV intensity and common water matrix were evaluated. The degradation of IPM reached nearly 100% within only 2.5 min at pH 9, and k increased at higher initial sulfite dosages and greater UV intensities. HCO had a limited effect on the degradation of IPM, while humic acid (HA) was found to be a strong inhibitor in the UV/sulfite process. With the synergistic action of UV/sulfite, most of the iodine in IPM was found to release in the form of iodide ions (up to approximately 98%), and a few formed iodide-containing organic compounds, reducing significantly the toxicity of degradation products. Under direct UV irradiation and free radical reduction (mainly e), 15 transformation intermediates of IPM were produced by amide hydrolysis, deiodination, hydroxyl radical addition and hydrogen abstraction reactions, in which free radical attack accounted for the main part. Consequently, the UV/sulfite process has a strong potential for IPM degradation in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2022.107383 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!