A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recycling different textile wastes for methane production: Morphological and microstructural changes and microbial community dynamics. | LitMetric

The dramatic increase of textile wastes has become a major global concern, which calls for alternative practices to alleviate severe environmental pollution and waste of resources due to their improper disposal and management. Anaerobic digestion (AD) is a cost-effective and eco-friendly technology that allows the bioconversion of organic wastes into clean energy (methane), which might be potentially useful for recycling textile wastes. In this study, AD was applied to 11 commonly available textile wastes in daily life to explore their feasibility, along with the methane production efficiency, biodegradability (B), degradation mechanism, and microbial community dynamics during AD. The results showed that all textile wastes presented an obvious decomposition from an integrated shape to fragmented pieces within 18 days except blue denim. The highest experimental methane production (EMP) of 356.0 mL/g volatile solids (VS) and B of 78.0 % were obtained with flax. The degradation mechanism could be concluded that predominant bacteria, especially Clostridium sensu stricto, first attached to the surface of textile waste and converted its main compositions cellulose and hemicellulose into acetate as the core intermediate. Then, acetate was utilized by the major methanogen, Methanothrix, through the acetoclastic methanogenesis pathway to produce methane. This study not only enriches the understanding of textile wastes degradation mechanisms during AD and provides very useful data on methane production from commonly available textile wastes but also proposes a promising method for efficiently recycling and utilizing the diverse range of textile wastes to reduce waste pollution and generate clean energy simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.07.018DOI Listing

Publication Analysis

Top Keywords

textile wastes
32
methane production
16
wastes
9
recycling textile
8
microbial community
8
community dynamics
8
textile
8
clean energy
8
commonly textile
8
degradation mechanism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!