The translocation of biologically active macromolecules through cell membranes is of vital importance for cells and is a key process for drug delivery. Proteins exploit specific conformational changes in their secondary structure to facilitate membrane translocation. For the large class of biological and synthetic macromolecules, where such conformational adaptions are not possible, guidelines to tailor the structure of monomers and macromolecules to aid membrane translocation and cross-membrane drug delivery would be highly desirable. Here, we use alternating amphiphilic macromolecules to systematically investigate the relation between polarity, polymer chain length, lipid chain length, polymer concentration, and temperature on membrane partition and translocation rate. We employed pulse field gradient NMR and confocal fluorescence microscopy to determine membrane adsorption and desorption rate constants and partitioning coefficients. We find that translocation is a two-step process involving a fast adsorption and membrane insertion process and a slower desorption process. Membrane insertion is a key step that determines the molecular weight, concentration, and temperature dependences. Passive translocation is possible on time scales from minutes to hours. Macromolecules with different adapted hydrophilic/hydrophobic comonomer sequences show the same translocation rate, indicating that common optimized translocation conditions can be realized with a variety of monomer chemical structures. The investigated copolymers are biocompatible, biodegradable, and capable of transporting a hydrophobic payload through the lipid membrane. This detailed understanding of the macromolecular translocation mechanism enables to better tailor the delivery of active agents using macromolecular carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c06659DOI Listing

Publication Analysis

Top Keywords

translocation
10
macromolecular translocation
8
translocation mechanism
8
drug delivery
8
membrane translocation
8
chain length
8
concentration temperature
8
translocation rate
8
membrane insertion
8
membrane
7

Similar Publications

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!