Formation of a Strong Heterogeneous Aluminum Lewis Acid on Silica.

Angew Chem Int Ed Engl

Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.

Published: October 2022

AI Article Synopsis

Article Abstract

Al(OC(CF ) )(PhF) reacts with silanols present on partially dehydroxylated silica to form well-defined ≡SiOAl(OC(CF ) ) (O(Si≡) ) (1). Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in 1 adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that 1 is a stronger Lewis acid than B(C F ) and Al(OC(CF ) )(PhF) but is weaker than Al(OC(CF ) ) and Pr Si . Cp Zr(CH ) reacts with 1 to form [Cp ZrCH ][≡SiOAl(OC(CF ) ) (CH )] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al O .

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202205745DOI Listing

Publication Analysis

Top Keywords

lewis acid
12
aloccf phf
8
formation strong
4
strong heterogeneous
4
heterogeneous aluminum
4
aluminum lewis
4
acid silica
4
silica aloccf
4
phf reacts
4
reacts silanols
4

Similar Publications

Due to an increased demand for natural food additives, clove oil was assessed as a natural alternative to chemical disinfectants in produce washing. This study assessed the antimicrobial activity of 5 and 10% (/) clove oil-amended wash liquid (CO) using a zone of inhibition (ZIB) test and determined the time required to completely inactivate pathogenic bacteria using bacterial death curve analysis. A washing experiment was used to evaluate CO's ability to inhibit bacterial growth on inoculated RTE spinach and in the wash water.

View Article and Find Full Text PDF

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective trans-annular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step.

View Article and Find Full Text PDF

Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids.

View Article and Find Full Text PDF

Chitosan-Based Porous Carbon Materials with Built-In Lewis Acid Boron Sites for Enhanced CO Capture and Conversion via an Electron-Inducing Effect.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.

Electron-induced effects, which are prevalent in adsorption and heterogeneous catalytic reactions, can significantly influence the state and uptake of adsorbates. Here, we demonstrate the in situ doping of electron-deficient boron into the backbone of chitosan-based porous carbon materials. Despite a reduction in specific surface area, the resulting boron-doped porous carbons (NBPCs) exhibit an enhanced CO adsorption performance, with sample NBPC-10 achieving CO adsorption capacities of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!