Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485526 | PMC |
http://dx.doi.org/10.1007/s12192-022-01291-z | DOI Listing |
Viruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.
With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy.
: Horseradish ( L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!