Zirconium-Based Catalysts in Organic Synthesis.

Top Curr Chem (Cham)

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

Published: August 2022

Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s41061-022-00396-4DOI Listing

Publication Analysis

Top Keywords

catalysts organic
16
zirconium catalysts
16
zirconium
8
organic transformations
8
inorganic zirconium
8
organic reactions
8
zirconium compounds
8
catalysts
7
organic
5
zirconium-based catalysts
4

Similar Publications

As the global quest for sustainable energy keeps rising, exploring novel efficient and practical photocatalysts remains a research and industrial urge. Particularly, metal organic frameworks were proven to contribute to various stages of the carbon cycle, from CO capture to its conversion. Herein, we report the photo-methanation activity of three isostructural, nickel-based metal organic frameworks incorporating additional niobium, iron, and aluminum sites, having demonstrated exceptional CO capture abilities from thin air in previous reports.

View Article and Find Full Text PDF

Engineering silica nanocoated whole-cell asymmetric biocatalyst for efficient preparation of a key chiral intermediate of (S)-Rivastigmine.

J Biotechnol

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Enhancing catalytic activity in MoC nanodots via nitrogen doping and graphene integration for efficient hydrogen evolution under alkaline conditions.

J Colloid Interface Sci

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Due to its exceptional electronic properties and catalytic activity, MoC has garnered significant attention for its application in electrocatalysis, particularly for the hydrogen evolution reaction (HER). However, several critical challenges continue to impede its widespread use, especially under strongly alkaline conditions. A primary obstacle is the enhancement of its intrinsic activity through further modification strategies, which remains a key limitation for its broader utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!