Objective: Neutrophil extracellular traps (NETs) can trigger pathological changes in vascular cells or vessel wall components, which are vascular pathological changes of hypertension. Therefore, we hypothesized that NETs would be associated with the occurrence of hypertension.

Methods: To evaluate the relationship between NETs and hypertension, we evaluated both the NETs formation in spontaneously hypertensive rats (SHRs) and the blood pressure of mice injected phorbol-12-myristate-13-acetate (PMA) via the tail vein to induce NETs formation in arterial wall. Meanwhile, proliferation and cell cycle of vascular smooth muscle cells (VSMCs), which were co-cultured with NETs were assessed. In addition, the role of exosomes from VSMCs co-cultured with NETs on proliferation signaling delivery was assessed.

Results: Formation of NETs increased in the arteries of SHR. PMA resulted in up-regulation expression of citrullinated Histone H3 (cit Histone H3, a NETs marker) in the arteries of mice accompanied with increasing of blood pressure. NET treatment significantly increased VSMCs count and accelerated G1/S transition in vitro . Cyclin-dependent kinase inhibitor 1b (CDKN1b) was down-regulated and Thymidine kinase 1 (TK1) was up-regulated in VSMCs. Exosomes from VSMCs co-cultured with NETs significantly accelerated the proliferation of VSMCs. TK1 was up-regulated in the exosomes from VSMCs co-cultured with NETs and in both the arterial wall and serum of mice with PMA.

Conclusion: NETs promote VSMCs proliferation via Akt/CDKN1b/TK1 and is related to hypertension development. Exosomes from VSMCs co-cultured with NETs participate in transferring the proliferation signal. These results support the role of NETs in the development of hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451946PMC
http://dx.doi.org/10.1097/HJH.0000000000003231DOI Listing

Publication Analysis

Top Keywords

vsmcs co-cultured
20
co-cultured nets
20
exosomes vsmcs
16
nets
14
vsmcs
9
neutrophil extracellular
8
extracellular traps
8
vascular smooth
8
smooth muscle
8
proliferation akt/cdkn1b/tk1
8

Similar Publications

Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes.

Front Cell Dev Biol

June 2024

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States.

Mural cells are critically important for the development, maturation, and maintenance of the blood vasculature. Pericytes are predominantly observed in capillaries and venules, while vascular smooth muscle cells (VSMCs) are found in arterioles, arteries, and veins. In this study, we have investigated functional differences between human pericytes and human coronary artery smooth muscle cells (CASMCs) as a model VSMC type.

View Article and Find Full Text PDF

Cannabidiol protects against acute aortic dissection by inhibiting macrophage infiltration and PMAIP1-induced vascular smooth muscle cell apoptosis.

J Mol Cell Cardiol

April 2024

Medical School of Chinese PLA, Beijing 100853, China; Department of Vascular and Endovascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD.

View Article and Find Full Text PDF

Neointimal myofibroblasts contribute to maintaining Th1/Tc1 and Th17/Tc17 inflammation in giant cell arteritis.

J Autoimmun

January 2024

Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France. Electronic address:

Vascular smooth muscle cells (VSMCs) have been shown to play a role in the pathogenesis of giant cell arteritis (GCA) through their capacity to produce chemokines recruiting T cells and monocytes in the arterial wall and their ability to migrate and proliferate in the neointima where they acquire a myofibroblast (MF) phenotype, leading to vascular stenosis. This study aimed to investigate if MFs could also impact T-cell polarization. Confocal microscopy was used to analyze fresh fragments of temporal artery biopsies (TABs).

View Article and Find Full Text PDF

Atherosclerosis is a serious cardiovascular disease that is characterised by the development of atheroma, which are lipid-laden plaques that build up within arterial walls due to chronic inflammatory processes. These lesions are fundamentally attributed to a complex cellular crosstalk between vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs) and central immune cells, such as macrophages (Mɸs), which promote vascular inflammation. The presence of VSMCs exerts both positive and negative effects during atheroma development, which can be attributed to their phenotypic plasticity.

View Article and Find Full Text PDF

Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!