Copper-Catalyzed Cross-Coupling of Alkyl and Phosphorus Radicals for C(sp)-P Bond Formation.

Org Lett

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Published: August 2022

A Cu-catalyzed cross-coupling of alkyl- and phosphorus-centered radicals for C(sp)-P bond formation is introduced. Diacyl peroxides, generated in situ from aliphatic acids and HO, serve as a source for alkyl radicals and also an initiator for the generation of phosphorus radicals from H-P(O) compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c02454DOI Listing

Publication Analysis

Top Keywords

phosphorus radicals
8
radicals csp-p
8
csp-p bond
8
bond formation
8
copper-catalyzed cross-coupling
4
cross-coupling alkyl
4
alkyl phosphorus
4
radicals
4
formation cu-catalyzed
4
cu-catalyzed cross-coupling
4

Similar Publications

Synthesis and Characterization of Polychlorinated Trityl Radical Substituted Phosphines.

Org Lett

January 2025

College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.

We synthesized a series of polychlorinated trityl radical substituted phenylphosphines. Through UV-vis photoluminescence (PL) spectroscopy and cyclic voltammetry, we explored the influence of the chemical modifications (oxidation/reduction, coordination, and methylation) of the phosphorus center(s) on tuning the optical and redox properties of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical framework. Those compounds hold promise for applications in coordination chemistry and luminescent materials, particularly in systems where both radical and phosphine-based functionalities can be leveraged for innovative properties.

View Article and Find Full Text PDF

This paper describes muon spin spectroscopy studies of 12-phosphatetraphene stabilized by a peri-trifluoromethyl group and a meso-aryl substituent. Even though the prepared solution in tetrahydrofuran (THF) was quite dilute (0.060 M) for transverse-field muon spin rotation (TF-µSR) measurements, the π-extended heavier congener of tetraphene presented a pair of signals due to a muoniated radical from which the muon hyperfine coupling constant (hfc) was determined.

View Article and Find Full Text PDF

Aminophosphonates serve as extremely important moieties with respect to their activities in biological systems. However, incorporating a Nitrogen and Phosphorus moiety by conventional techniques in ionic mode is usually associated with extensive prefunctionalization of the substrates, employing harsh conditions and reagents that limit the viability of these methods. Introducing both of these components as radicals may be a viable option.

View Article and Find Full Text PDF
Article Synopsis
  • A cationic N-heterocyclic phosphenium iron tetracarbonyl complex was synthesized and its reactivity with various anionic reactants was investigated, resulting in different products depending on the anion involved.
  • Reactions with fluoride and chloride produced neutral diazaphospholenes, while bromide and iodide led to NHP iron halides through metal addition and decarbonylation.
  • At room temperature, the cationic complex primarily reduced to form a detectable Fe-centered radical, whereas at -78 °C, CH-metalation was favored, further evidenced by the characterization of a neutral borane-adduct.
  • The complex’s reactivity variations are attributed to its higher electrophilicity compared to neutral complexes
View Article and Find Full Text PDF

Improving fire retardancy and mechanical properties of polyurethane elastomer by acid hydrotropic lignin.

Int J Biol Macromol

December 2024

USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:

Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!