Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site-targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of the cancer cells. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand-decorated lipid-based nanomedicines with their clinical status have been explained in tabulated form to provide a wider scope to the readers regarding ligand-coupled NLBCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28205DOI Listing

Publication Analysis

Top Keywords

theranostics cancer
8
drug delivery
8
cancer
5
ligand conjugated
4
conjugated lipid-based
4
lipid-based nanocarriers
4
nanocarriers cancer
4
cancer theranostics
4
cancer major
4
major health-related
4

Similar Publications

Metastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.

View Article and Find Full Text PDF

This review article studies the complex field of noncoding RNAs (ncRNAs) in cancer biology, focusing on their potential use as biomarkers and therapeutic targets. NcRNAs include circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs). We discuss how ncRNAs affect gene expression in cancerous cells, the spread of cancer, and metastasis.

View Article and Find Full Text PDF

From multi-omics to predictive biomarker: AI in tumor microenvironment.

Front Immunol

December 2024

Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

In recent years, tumors have emerged as a major global health threat. An increasing number of studies indicate that the production, development, metastasis, and elimination of tumor cells are closely related to the tumor microenvironment (TME). Advances in artificial intelligence (AI) algorithms, particularly in large language models, have rapidly propelled research in the medical field.

View Article and Find Full Text PDF

Introduction: Accurate genotyping of Killer cell Immunoglobulin-like Receptor (KIR) genes plays a pivotal role in enhancing our understanding of innate immune responses, disease correlations, and the advancement of personalized medicine. However, due to the high variability of the KIR region and high level of sequence similarity among different KIR genes, the generic genotyping workflows are unable to accurately infer copy numbers and complete genotypes of individual KIR genes from next-generation sequencing data. Thus, specialized genotyping tools are needed to genotype this complex region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!