AI Article Synopsis

Article Abstract

Despite the prevalence of rat models to study human disease and injury, existing methods for quantifying behavior through skeletal movements are problematic owing to skin movement inaccuracies associated with optical video analysis, or require invasive implanted markers or time-consuming manual rotoscoping for X-ray video approaches. We examined the use of a machine learning tool, DeepLabCut, to perform automated, markerless tracking in bi-planar X-ray videos of locomoting rats. Models were trained on 590 pairs of video frames to identify 19 unique skeletal landmarks of the pelvic limb. Accuracy, precision and time savings were assessed. Machine-identified landmarks deviated from manually labeled counterparts by 2.4±0.2 mm (n=1710 landmarks). DeepLabCut decreased analysis time by over three orders of magnitude (1627×) compared with manual labeling. Distribution of these models may enable the processing of a large volume of accurate X-ray kinematics locomotion data in a fraction of the time without requiring surgically implanted markers.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.244540DOI Listing

Publication Analysis

Top Keywords

markerless tracking
8
x-ray video
8
video analysis
8
implanted markers
8
deeplabcut increases
4
increases markerless
4
tracking efficiency
4
x-ray
4
efficiency x-ray
4
video
4

Similar Publications

Clinical Whole-Body Gait Characterization Using a Single RGB-D Sensor.

Sensors (Basel)

January 2025

German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany.

Instrumented gait analysis is widely used in clinical settings for the early detection of neurological disorders, monitoring disease progression, and evaluating fall risk. However, the gold-standard marker-based 3D motion analysis is limited by high time and personnel demands. Advances in computer vision now enable markerless whole-body tracking with high accuracy.

View Article and Find Full Text PDF

Marker-Less Video Analysis of Infant Movements for Early Identification of Neurodevelopmental Disorders.

Diagnostics (Basel)

January 2025

Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

The early identification of neurodevelopmental disorders (NDDs) in infants is crucial for effective intervention and improved long-term outcomes. Recent evidence indicates a correlation between deficits in spontaneous movements in newborns and the likelihood of developing NDDs later in life. This study aims to address this aspect by employing a marker-less Artificial Intelligence (AI) approach for the automatic assessment of infants' movements from single-camera video recordings.

View Article and Find Full Text PDF

In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.

View Article and Find Full Text PDF

Real-time lung extraction from synthesized x-rays improves pulmonary image-guided radiotherapy.

Phys Med Biol

January 2025

Radiation Oncology, University of California San Francisco, 1600 Divisadero St, San Francisco, California, 94143, UNITED STATES.

Lung tumors can be obscured in X-rays, preventing accurate and robust localization. To improve lung conspicuity for image-guided procedures, we isolate the lungs in the anterior-posterior (AP) X-rays using a lung extraction network (LeX-net) that virtually removes overlapping thoracic structures, including ribs, diaphragm, liver, heart, and trachea. Approach: 73,965 thoracic 3DCTs and 106 thoracic 4DCTs were included.

View Article and Find Full Text PDF

The countermovement jump (CMJ) is a widely used test to assess lower body neuromuscular performance. This study aims to analyze the validity and reliability of an iOS application using artificial intelligence to measure CMJ height, force, velocity, and power in unloaded and loaded conditions. Twelve physically active participants performed 12 CMJs with external loads ranging from 0% to 70% of their body mass while being simultaneously monitored with a pair of force platforms and the My Jump Lab application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!